1. Transient Cell-intrinsic Activity Regulates the Migration and Laminar Positioning of Cortical Projection Neurons.
- Author
-
Hurni N, Kolodziejczak M, Tomasello U, Badia J, Jacobshagen M, Prados J, and Dayer A
- Subjects
- Age Factors, Animals, Animals, Newborn, Body Patterning, Calcium metabolism, Cell Movement genetics, Cerebral Cortex metabolism, Clozapine analogs & derivatives, Clozapine pharmacology, Electroporation, Embryo, Mammalian, Female, Green Fluorescent Proteins genetics, Green Fluorescent Proteins metabolism, Homeodomain Proteins metabolism, In Vitro Techniques, Mice, Nerve Tissue Proteins metabolism, Neurons classification, Neurons cytology, Nuclear Proteins metabolism, POU Domain Factors metabolism, Pregnancy, RNA Splicing Factors genetics, RNA Splicing Factors metabolism, Receptor, Muscarinic M3 genetics, Receptor, Muscarinic M3 metabolism, Receptors, Glutamate metabolism, Repressor Proteins metabolism, Signal Transduction, T-Box Domain Proteins metabolism, Transcription Factors genetics, Transcription Factors metabolism, Cell Movement physiology, Cerebral Cortex cytology, Nerve Net physiology, Neurons physiology
- Abstract
Neocortical microcircuits are built during development and require the coordinated assembly of excitatory glutamatergic projection neurons (PNs) into functional networks. Neuronal migration is an essential step in this process. In addition to cell-intrinsic mechanisms, external cues including neurotransmitters regulate cortical neuron migration, suggesting that early activity could influence this process. Here, we aimed to investigate the role of cell-intrinsic activity in migrating PNs in vivo using a designer receptor exclusively activated by a designer drug (DREADD) chemogenetic approach. In utero electroporation was used to specifically express the human M3 muscarinic cholinergic Gq-coupled receptor (hM3Dq) in PNs and calcium activity, migratory dynamics, gene expression, and laminar positioning of PNs were assessed following embryonic DREADD activation. We found that transient embryonic DREADD activation induced premature branching and transcriptional changes in migrating PNs leading to a persistent laminar mispositioning of superficial layer PNs into deep cortical layers without affecting expression of layer-specific molecular identity markers. In addition, live imaging approaches indicated that embryonic DREADD activation increased calcium transients in migrating PNs and altered their migratory dynamics by increasing their pausing time. Taken together, these results support the idea that increased cell-intrinsic activity during migration acts as a stop signal for migrating cortical PNs., (© The Author 2017. Published by Oxford University Press.)
- Published
- 2017
- Full Text
- View/download PDF