1. Conjugation Mediates Large-Scale Chromosomal Transfer in Streptomyces Driving Diversification of Antibiotic Biosynthetic Gene Clusters.
- Author
-
Choufa C, Gascht P, Leblond H, Gauthier A, Vos M, Bontemps C, and Leblond P
- Subjects
- Streptomyces genetics, Streptomyces metabolism, Multigene Family, Gene Transfer, Horizontal, Chromosomes, Bacterial genetics, Conjugation, Genetic, Anti-Bacterial Agents biosynthesis
- Abstract
Streptomyces are ubiquitous soil-dwelling bacteria with large, linear genomes that are of special importance as a source of metabolites used in human and veterinary medicine, agronomy, and industry. Conjugative elements (actinomycetes integrative and conjugative elements, AICEs) are the main drivers of Streptomyces Horizontal Gene Transfer. AICE transfer has long been known to be accompanied by mobilization of chromosomal DNA. However, the magnitude of DNA transfer, or the localization of acquired DNA across their linear chromosome, has remained undetermined. We here show that conjugative crossings in sympatric strains of Streptomyces result in the large-scale, genome-wide distributed replacement of up to one-third of the recipient chromosome, a phenomenon for which we propose the name "Streptomyces Chromosomal Transfer" (SCT). Such chromosome blending results in the acquisition, loss, and hybridization of Specialized Metabolite Biosynthetic Gene Clusters, leading to a novel metabolic arsenal in exconjugant offspring. Harnessing conjugation-mediated specialized metabolite biosynthesis gene cluster diversification holds great promise in the discovery of new bioactive compounds including antibiotics., Competing Interests: Conflict of Interest The authors declare that there are no conflicts of interest., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF