1. Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruption†
- Author
-
Matthew D. Hale, Brenna M Doheny, Louis J. Guillette, Jessica A McCoy, Benjamin B. Parrott, and Thomas M. Galligan
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Embryo, Nonmammalian ,medicine.drug_class ,medicine.medical_treatment ,Embryonic Development ,Ovary ,Endocrine Disruptors ,03 medical and health sciences ,Follicle-stimulating hormone ,0302 clinical medicine ,Internal medicine ,medicine ,Animals ,Endocrine system ,Regulation of gene expression ,Alligators and Crocodiles ,030219 obstetrics & reproductive medicine ,biology ,Gene Expression Regulation, Developmental ,Estrogens ,Environmental Exposure ,Cell Biology ,General Medicine ,Cellular Reprogramming ,Aryl hydrocarbon receptor ,Androgen ,Lakes ,Steroid hormone ,030104 developmental biology ,Endocrinology ,medicine.anatomical_structure ,Oviparity ,Reproductive Medicine ,Maternal Exposure ,Estrogen ,Models, Animal ,biology.protein ,Female ,Transcriptome ,Water Pollutants, Chemical - Abstract
Estrogens regulate key aspects of sexual determination and differentiation, and exposure to exogenous estrogens can alter ovarian development. Alligators inhabiting Lake Apopka, FL, are historically exposed to estrogenic endocrine disrupting contaminants and are characterized by a suite of reproductive abnormalities, including altered ovarian gene expression and abated transcriptional responses to follicle stimulating hormone. Here, we test the hypothesis that disrupting estrogen signaling during gonadal differentiation results in persistent alterations to ovarian gene expression that mirror alterations observed in alligators from Lake Apopka. Alligator embryos collected from a reference site lacking environmental contamination were exposed to estradiol-17 beta or a nonaromatizable androgen in ovo and raised to the juvenile stage. Changes in basal and gonadotropin-challenged ovarian gene expression were then compared to Apopka juveniles raised under identical conditions. Assessing basal transcription in untreated reference and Apopka animals revealed a consistent pattern of differential expression of key ovarian genes. For each gene where basal expression differed across sites, in ovo estradiol treatment in reference individuals recapitulated patterns observed in Apopka alligators. Among those genes affected by site and estradiol treatment were three aryl hydrocarbon receptor (AHR) isoforms, suggesting that developmental estrogen signaling might program sensitivity to AHR ligands later in life. Treatment with gonadotropins stimulated strong ovarian transcriptional responses; however, the magnitude of responses was not strongly affected by steroid hormone treatment. Collectively, these findings demonstrate that precocious estrogen signaling in the developing ovary likely underlies altered transcriptional profiles observed in a natural population exposed to endocrine disrupting contaminants. more...
- Published
- 2018
- Full Text
- View/download PDF