1. Identification of key genes and pathways affected in epicardial adipose tissue from patients with coronary artery disease by integrated bioinformatics analysis
- Author
-
Guogang Zhang, Qian Xu, Ruizheng Shi, Qian-Chen Wang, and Liao Tan
- Subjects
Subcutaneous adipose tissue ,Bioinformatics ,Cardiology ,lcsh:Medicine ,CAD ,Computational biology ,030204 cardiovascular system & hematology ,Biology ,Gene expression omnibus ,Coronary artery disease ,General Biochemistry, Genetics and Molecular Biology ,Pathogenesis ,03 medical and health sciences ,Bioinformatics analysis ,0302 clinical medicine ,Epicardial adipose tissue ,microRNA ,Internal Medicine ,medicine ,KEGG ,Gene ,030304 developmental biology ,0303 health sciences ,Mechanism (biology) ,Microarray analysis techniques ,General Neuroscience ,lcsh:R ,General Medicine ,medicine.disease ,General Agricultural and Biological Sciences - Abstract
Background Coronary artery disease (CAD) is a common disease with high cost and mortality. Here, we studied the differentially expressed genes (DEGs) between epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) from patients with CAD to explore the possible pathways and mechanisms through which EAT participates in the CAD pathological process. Methods Microarray data for EAT and SAT were obtained from the Gene Expression Omnibus database, including three separate expression datasets: GSE24425, GSE64554 and GSE120774. The DEGs between EAT samples and SAT control samples were screened out using the limma package in the R language. Next, we conducted bioinformatic analysis of gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways to discover the enriched gene sets and pathways associated with DEGs. Simultaneously, gene set enrichment analysis was carried out to discover enriched gene functions and pathways from all expression data rather than DEGs. The PPI network was constructed to reveal the possible protein interactions consistent with CAD. Mcode and Cytohubba in Cytoscape revealed the possible key CAD genes. In the next step, the corresponding predicted microRNAs (miRNAs) were analysed using miRNA Data Integration Portal. RT-PCR was used to validate the bioinformatic results. Results The three datasets had a total of 89 DEGs (FC log2 > 1 and P value < 0.05). By comparing EAT and SAT, ten common key genes (HOXA5, HOXB5, HOXC6, HOXC8, HOXB7, COL1A1, CCND1, CCL2, HP and TWIST1) were identified. In enrichment analysis, pro-inflammatory and immunological genes and pathways were up-regulated. This could help elucidate the molecular expression mechanism underlying the involvement of EAT in CAD development. Several miRNAs were predicted to regulate these DEGs. In particular, hsa-miR-196a-5p and hsa-miR-196b-5p may be more reliably associated with CAD. Finally, RT-PCR validated the significant difference of OXA5, HOXC6, HOXC8, HOXB7, COL1A1, CCL2 between EAT and SAT (P value < 0.05). Conclusions Between EAT and SAT in CAD patients, a total of 89 DEGs, and 10 key genes, including HOXA5, HOXB5, HOXC6, HOXC8, HOXB7, COL1A1, CCND1, CCL2, HP and TWIST1, and miRNAs hsa-miR-196a-5p and hsa-miR-196b-5p were predicted to play essential roles in CAD pathogenesis. Pro-inflammatory and immunological pathways could act as key EAT regulators by participating in the CAD pathological process.
- Published
- 2020
- Full Text
- View/download PDF