1. Stereo-Selective Preparation of Teneraic Acid, trans-(2S,6S)-Piperidine-2,6-dicarboxylic Acid, via Anodic Oxidation and Cobalt-Catalyzed Carbonylation.
- Author
-
Amino Y, Nishi S, and Izawa K
- Subjects
- Aldehydes chemistry, Amides chemistry, Catalysis, Circular Dichroism, Dicarboxylic Acids chemical synthesis, Oxidation-Reduction, Stereoisomerism, Cobalt chemistry, Dicarboxylic Acids chemistry, Piperidines chemistry
- Abstract
Teneraic acid (piperidine-2,6-dicarboxylic acid) is a naturally occurring imino acid that comprises three stereoisomers due to its two asymmetric centers at C2 and C6. The configuration of natural teneraic acid is reported to correspond to trans-(2S,6S). However, a few studies are focused on the stereospecific synthesis of trans-(2S,6S)-teneraic acid. The present study investigates a convenient synthetic method that includes regiospecific anodic oxidation and stereospecific cobalt-catalyzed carbonylation to obtain trans-(2S,6S)-teneraic acid. Methyl (S)-N-benzoyl-α-methoxypipecolate, the key intermediate that displays a structure that corresponds to an intermediate (N-α-hydroxyalkyl amide) of intramolecular amidocarbonylation, was obtained via an anodic oxidation of methyl (S)-N-benzoylpipecolate. Subsequently, cobalt-catalyzed carbonylation converted the methyl (S)-N-benzoyl-α-methoxypipecolate to trans-(2S,6S)-N-benzoyl-teneraic acid dimethyl ester in good optical purity (>95% enantiomeric excess (ee)) and modest yield (63%). Finally, de-protection occurred via acidic hydrolysis to obtain trans-(2S,6S)-teneraic acid. The stereochemistry of synthesized teneraic acid was confirmed as corresponding to trans-(2S,6S) by comparing its physical properties with those of a cis-meso-isomer and those of a trans-(2S,6S)-isomer that were reported in previous studies.
- Published
- 2017
- Full Text
- View/download PDF