PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR PROGRAMA DE EXCELENCIA ACADEMICA A medição e classificação de descargas parciais constituem uma importante ferramenta de avaliação dos sistemas de isolamento utilizados em equipamentos de alta tensão. Após o pré-processamento dos dados, que captura, digitaliza e filtra o sinal de descargas parciais, geralmente eliminando os ruídos, existem basicamente duas etapas principais, que são a extração de características e a classificação de padrões. As descargas parciais contêm um conjunto de características discriminatórias únicas que lhes permitem ser reconhecidas. Assim, o primeiro procedimento no processo de classificação é definir quais delas podem ser utilizadas e qual o método de extração destas características. O fenômeno de descargas parciais tem uma natureza transitória e é caracterizado por correntes pulsantes com uma duração de vários nanossegundos até poucos microssegundos. Sua magnitude não é sempre proporcional ao dano causado, sendo que descargas de pequena magnitude podem levar rapidamente à evolução de um defeito. Por isso a necessidade de se entender bem este fenômeno e saber interpretar os dados. Além disso, equipamentos de alta tensão de grande porte, como motores e geradores, podem apresentar mais de uma fonte interna de descargas parciais, sendo importante separar os sinais dessas diferentes fontes antes de realizar a classificação. No caso de outros equipamentos de alta tensão de menor porte, como para-raios e transformadores de corrente de subestação, a simples detecção da presença de descargas parciais interna ao equipamento, independente do número de fontes, já é suficiente para indicar a retirada de operação destes equipamentos, dado seu baixo custo relativo e o elevado grau de importância destes para a confiabilidade do sistema onde estão inseridos. Para um diagnóstico completo e confíável de isolamentos de alta tensão, há a demanda por um sistema de análise capaz de promover com eficácia a detecção de descargas parciais internas aos equipamentos, a separação das diversas fontes de descargas parciais, no caso dos equipamentos de grande porte, bem como realizar a correta classificação do tipo de defeito, com base principalmente na análise das características discriminantes das diferentes fontes e na assinatura dos sinais para os diferentes defeitos. Este estudo contribui para o preenchimento desta lacuna, apresentando metodologias que se mostram robustas e precisas nos testes realizados, de modo que possam efetivamente orientar os especialistas em manutenção na tomada de decisões. Para fazer isso, são propostas novas variáveis capazes de extrair informações relevantes de sinais no tempo medidos em diversos tipos de isolamentos, sendo aplicadas aqui em dados obtidos em campo e em laboratório para avaliar sua eficácia na tarefa. Essas informações são tratadas utilizando técnicas de classificação de padrões e inteligência artificial para determinar de forma automática a presença de descargas parciais, o número de fontes diferentes e o tipo de defeito nos isolamentos de alta tensão utilizados no estudo. Outra contribuição do estudo é a criação de um banco de dados histórico, baseada em processamento de imagem, com padrões de mapas de descargas parciais conhecidos na literatura em máquinas rotativas, para serem utilizados na classificação de novos mapas medidos neste tipo de equipamento. Measurement and classification of partial discharges are an important tool for the evaluation of insulation systems used in high voltage equipments. After pre-processing of data, which captures, scans and filters the signal of partial discharges, generally eliminating noises, there are basically two main steps, which are the extraction of characteristics and the pattern classification. Partial discharges contain a set of unique discriminatory characteristics that allow them to be recognized. Thus, the first procedure in the classification process is to define which of them can be used and which is the method for extraction of those characteristics. The phenomenon of partial discharges has a transient nature and is characterized by pulsating currents with a duration of several nanoseconds up to a few microseconds. Its magnitude is not always proportional to the damage caused, and discharges of small magnitude can quickly lead to the evolution of a failure. Therefore the need to understand this phenomenon well and to know how to interpret the data. In addition, large high voltage equipments such as motors and generators may have more than one internal source of partial discharges, and it is important to separate the signals from those different sources prior to classification. In the case of smaller high voltage equipments, as surge arrester and substation current transformers, the simple detection of the presence of partial discharges inside the equipment, regardless of the number of sources, is sufficient to indicate the withdrawal of operation of the equipment, given their low relative cost and the high degree of importance of these to the reliability of the system where they are part of. For a complete and reliable diagnosis of high voltage insulations, there is a demand for an analysis system capable of effectively promoting the detection of the partial discharges internal to the equipments, the separation of the various sources of partial discharges in the case of large equipments, as well as to carry out the correct classification of the type of failure. The system should be based mainly on the analysis of the discriminating characteristics of the different sources and the signature of the signals for the different failure. This study contributes to fill this gap by presenting methodologies that are robust and accurate in the tests performed, so that they can effectively guide maintenance specialists in decision making. To do this, new variables are proposed to extract relevant information from time signals measured in various types of insulations, being applied here in field and laboratory data to evaluate their effectiveness in the task. This information is treated using standard classification techniques and artificial intelligence to automatically determine the presence of partial discharges, the number of different sources and the type of defect in the high voltage insulations used in the study. Another contribution of the study is the creation of a historical database, based on image processing, with partial discharge map patterns known in the literature on rotating machines, to be used in the classification of new maps measured in this type of equipment.