1. Manufacturing CD20/CD19-targeted iCasp9 regulatable CAR-TSCM cells using a Quantum pBac-based CAR-T engineering system.
- Author
-
Chang PS, Chen YC, Hua WK, Hsu JC, Tsai JC, Huang YW, Kao YH, Wu PH, Wang PN, Chang YF, Chang MC, Chang YC, Jian SL, Lai JS, Lai MT, Yang WC, Shen CN, Wen KK, and Wu SC
- Subjects
- Humans, Animals, Mice, Cell Engineering methods, T-Lymphocytes immunology, Cell Line, Tumor, Antigens, CD19 immunology, Antigens, CD20 immunology, Antigens, CD20 genetics, Immunotherapy, Adoptive methods, Receptors, Chimeric Antigen immunology, Receptors, Chimeric Antigen genetics
- Abstract
CD19-targeted chimeric antigen receptor (CAR) T cell therapies have driven a paradigm shift in the treatment of relapsed/refractory B-cell malignancies. However, >50% of CD19-CAR-T-treated patients experience progressive disease mainly due to antigen escape and low persistence. Clinical prognosis is heavily influenced by CAR-T cell function and systemic cytokine toxicities. Furthermore, it remains a challenge to efficiently, cost-effectively, and consistently manufacture clinically relevant numbers of virally engineered CAR-T cells. Using a highly efficient piggyBac transposon-based vector, Quantum pBac™ (qPB), we developed a virus-free cell-engineering system for development and production of multiplex CAR-T therapies. Here, we demonstrate in vitro and in vivo that consistent, robust and functional CD20/CD19 dual-targeted CAR-T stem cell memory (CAR-TSCM) cells can be efficiently produced for clinical application using qPB™. In particular, we showed that qPB™-manufactured CAR-T cells from cancer patients expanded efficiently, rapidly eradicated tumors, and can be safely controlled via an iCasp9 suicide gene-inducing drug. Therefore, the simplicity of manufacturing multiplex CAR-T cells using the qPB™ system has the potential to improve efficacy and broaden the accessibility of CAR-T therapies., Competing Interests: GenomeFrontier Therapeutics TW Co., Ltd. funded the study and played a crucial role in the study design, data collection and analysis, decision to publish, and preparation of the manuscripts. The coauthors – Peter S. Chang, Yi-Chun Chen, Wei-Kai Hua, Jeff C. Hsu, Jui-Cheng Tsai, Yi-Wun Huang, Yi-Hsin Kao, Pei-Hua Wu, Kuo-Lan Karen Wen, and Sareina Chiung-Yuan Wu – are affiliated with GenomeFrontier Therapeutics TW Co., Ltd. This does not alter our adherence to PLOS ONE policies on sharing data and materials., (Copyright: © 2024 Chang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF