1. Multiscale networks in multiple sclerosis.
- Author
-
Kennedy, Keith E., Kerlero de Rosbo, Nicole, Uccelli, Antonio, Cellerino, Maria, Ivaldi, Federico, Contini, Paola, De Palma, Raffaele, Harbo, Hanne F., Berge, Tone, Bos, Steffan D., Høgestøl, Einar A., Brune-Ingebretsen, Synne, de Rodez Benavent, Sigrid A., Paul, Friedemann, Brandt, Alexander U., Bäcker-Koduah, Priscilla, Behrens, Janina, Kuchling, Joseph, Asseyer, Susanna, and Scheel, Michael
- Subjects
MULTIPLE sclerosis ,PEARSON correlation (Statistics) ,SYSTEMS biology ,WALKING speed ,CENTRAL nervous system ,RETINAL imaging ,BIOLOGICAL networks - Abstract
Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype. Author summary: Complex diseases such as Multiple Sclerosis (MS) involve the contribution of a wide range of biological processes. We conducted a systems biology study of MS based on network analysis and deep phenotyping in a prospective cohort of patients with clinical, imaging, genetics, and omics assessments. The genes, proteins and cell paths explained variation in central nervous system damage, and in metrics of disease severity. Such multilayer paths explain the different phenotypes of the disease and can be developed as biomarkers of MS. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF