1. Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study.
- Author
-
Erdős B, van Sloun B, Goossens GH, O'Donovan SD, de Galan BE, van Greevenbroek MMJ, Stehouwer CDA, Schram MT, Blaak EE, Adriaens ME, van Riel NAW, and Arts ICW
- Subjects
- Humans, Prospective Studies, Cross-Sectional Studies, Insulin, Glucose, Blood Glucose
- Abstract
Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from "bottom-up" mechanistic models to "top-down" data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals' glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R2 and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests., Competing Interests: This study received funding from Janssen-Cilag, Novo Nordisk Farma., Sanofi-Aventis Netherlands, DSM Nutritional products, FrieslandCampina, and Danone Nutricia Research. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials., (Copyright: © 2023 Erdős et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF