1. Inter-rater reliability in labeling quality and pathological features of retinal OCT scans: A customized annotation software approach.
- Author
-
Katherine Du, Stavan Shah, Sandeep Chandra Bollepalli, Mohammed Nasar Ibrahim, Adarsh Gadari, Shan Sutharahan, José-Alain Sahel, Jay Chhablani, and Kiran Kumar Vupparaboina
- Subjects
Medicine ,Science - Abstract
ObjectivesVarious imaging features on optical coherence tomography (OCT) are crucial for identifying and defining disease progression. Establishing a consensus on these imaging features is essential, particularly for training deep learning models for disease classification. This study aims to analyze the inter-rater reliability in labeling the quality and common imaging signatures of retinal OCT scans.Methods500 OCT scans obtained from CIRRUS HD-OCT 5000 devices were displayed at 512x1024x128 resolution on a customizable, in-house annotation software. Each patient's eye was represented by 16 random scans. Two masked reviewers independently labeled the quality and specific pathological features of each scan. Evaluated features included overall image quality, presence of fovea, and disease signatures including subretinal fluid (SRF), intraretinal fluid (IRF), drusen, pigment epithelial detachment (PED), and hyperreflective material. The raw percentage agreement and Cohen's kappa (κ) coefficient were used to evaluate concurrence between the two sets of labels.ResultsOur analysis revealed κ = 0.60 for the inter-rater reliability of overall scan quality, indicating substantial agreement. In contrast, there was slight agreement in determining the cause of poor image quality (κ = 0.18). The binary determination of presence and absence of retinal disease signatures showed almost complete agreement between reviewers (κ = 0.85). Specific retinal pathologies, such as the foveal location of the scan (0.78), IRF (0.63), drusen (0.73), and PED (0.87), exhibited substantial concordance. However, less agreement was found in identifying SRF (0.52), hyperreflective dots (0.41), and hyperreflective foci (0.33).ConclusionsOur study demonstrates significant inter-rater reliability in labeling the quality and retinal pathologies on OCT scans. While some features show stronger agreement than others, these standardized labels can be utilized to create automated machine learning tools for diagnosing retinal diseases and capturing valuable pathological features in each scan. This standardization will aid in the consistency of medical diagnoses and enhance the accessibility of OCT diagnostic tools.
- Published
- 2024
- Full Text
- View/download PDF