1. Over-Expression of Cysteine Leucine Rich Protein Is Related to SAG Resistance in Clinical Isolates of Leishmania donovani
- Author
-
Shyam Sundar, Amogh A. Sahasrabuddhe, Priyanka Shah, Sanchita Das, Mohammad Imran Siddiqi, Narendra Kumar Yadav, Anuradha Dube, and Rati Tandon
- Subjects
Antimony ,lcsh:Arctic medicine. Tropical medicine ,lcsh:RC955-962 ,Antiprotozoal Agents ,Drug Resistance ,Protozoan Proteins ,Leishmania donovani ,Antibodies, Protozoan ,Drug resistance ,Biology ,medicine.disease_cause ,Microbiology ,parasitic diseases ,Escherichia coli ,medicine ,Cloning, Molecular ,Gene ,Phylogeny ,Infectivity ,lcsh:Public aspects of medicine ,Public Health, Environmental and Occupational Health ,lcsh:RA1-1270 ,DNA, Protozoan ,biology.organism_classification ,Leishmania ,Molecular biology ,Blot ,Infectious Diseases ,Gene Expression Regulation ,Antimonial ,Genome, Protozoan ,Research Article - Abstract
Background Resistance emergence against antileishmanial drugs, particularly Sodium Antimony Gluconate (SAG) has severely hampered the therapeutic strategy against visceral leishmaniasis, the mechanism of resistance being indistinguishable. Cysteine leucine rich protein (CLrP), was recognized as one of the overexpressed proteins in resistant isolates, as observed in differential proteomics between sensitive and resistant isolates of L. donovani. The present study deals with the characterization of CLrP and for its possible connection with SAG resistance. Methodology and Principal Findings In pursuance of deciphering the role of CLrP in SAG resistance, gene was cloned, over-expressed in E. coli system and thereafter antibody was raised. The expression profile of CLrP and was found to be over-expressed in SAG resistant clinical isolates of L. donovani as compared to SAG sensitive ones when investigated by real-time PCR and western blotting. CLrP has been characterized through bioinformatics, immunoblotting and immunolocalization analysis, which reveals its post-translational modification along with its dual existence in the nucleus as well as in the membrane of the parasite. Further investigation using a ChIP assay confirmed its DNA binding potential. Over-expression of CLrP in sensitive isolate of L. donovani significantly decreased its responsiveness to SAG (SbV and SbIII) and a shift towards the resistant mode was observed. Further, a significant increase in its infectivity in murine macrophages has been observed. Conclusion/Significance The study reports the differential expression of CLrP in SAG sensitive and resistant isolates of L. donovani. Functional intricacy of CLrP increases with dual localization, glycosylation and DNA binding potential of the protein. Further over-expressing CLrP in sensitive isolate of L. donovani shows significantly decreased sensitivity towards SAG and increased infectivity as well, thus assisting the parasite in securing a safe niche. Results indicates the possible contribution of CLrP to antimonial resistance in L. donovani by assisting the parasite growth in the macrophages., Author Summary Leishmania causes complex of pathologies called Leishmaniasis and among the several forms visceral leishmaniasis is the precarious one as being fatal, if left untreated. Emergence of resistance against several antileishmanials particularly Sodium Antimony Gluconate (SAG) has severely battered the therapeutic strategy against VL and the resistance mechanism is still vague. Thus, to apprehend the underlying mechanism, previously, a differential proteomics of SAG unresponsive versus SAG sensitive isolates of L.donovani was done wherein overexpression of Cysteine Leucine Rich protein (CLrP), a member of Leucine rich repeat superfamily, was observed. To scrutinize its involvement in the SAG resistance mechanism, which is till date not investigated, the characterization of CLrP was carried out which revealed its post-translational modification along with its dual existence in the nucleus and in the membrane of the parasite. Further investigation using a ChIP assay confirmed its DNA binding potential. Over-expression of CLrP in sensitive isolate of L. donovani significantly decreased its SAG sensitivity. CLrP overexpressed parasites have increased infectivity. These results point out towards the CLrP’s contribution to antimonial resistance in L. donovani by facilitating parasites growth through macrophages. Further studies are required to depict CLrP as a potential drug target to strengthen the present arsenal against L donovani.
- Published
- 2015