7 results on '"Rosalba Giugno"'
Search Results
2. GRAFIMO: Variant and haplotype aware motif scanning on pangenome graphs.
- Author
-
Manuel Tognon, Vincenzo Bonnici, Erik Garrison, Rosalba Giugno, and Luca Pinello
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Transcription factors (TFs) are proteins that promote or reduce the expression of genes by binding short genomic DNA sequences known as transcription factor binding sites (TFBS). While several tools have been developed to scan for potential occurrences of TFBS in linear DNA sequences or reference genomes, no tool exists to find them in pangenome variation graphs (VGs). VGs are sequence-labelled graphs that can efficiently encode collections of genomes and their variants in a single, compact data structure. Because VGs can losslessly compress large pangenomes, TFBS scanning in VGs can efficiently capture how genomic variation affects the potential binding landscape of TFs in a population of individuals. Here we present GRAFIMO (GRAph-based Finding of Individual Motif Occurrences), a command-line tool for the scanning of known TF DNA motifs represented as Position Weight Matrices (PWMs) in VGs. GRAFIMO extends the standard PWM scanning procedure by considering variations and alternative haplotypes encoded in a VG. Using GRAFIMO on a VG based on individuals from the 1000 Genomes project we recover several potential binding sites that are enhanced, weakened or missed when scanning only the reference genome, and which could constitute individual-specific binding events. GRAFIMO is available as an open-source tool, under the MIT license, at https://github.com/pinellolab/GRAFIMO and https://github.com/InfOmics/GRAFIMO.
- Published
- 2021
- Full Text
- View/download PDF
3. GASOLINE: a Greedy And Stochastic algorithm for optimal Local multiple alignment of Interaction NEtworks.
- Author
-
Giovanni Micale, Alfredo Pulvirenti, Rosalba Giugno, and Alfredo Ferro
- Subjects
Medicine ,Science - Abstract
The analysis of structure and dynamics of biological networks plays a central role in understanding the intrinsic complexity of biological systems. Biological networks have been considered a suitable formalism to extend evolutionary and comparative biology. In this paper we present GASOLINE, an algorithm for multiple local network alignment based on statistical iterative sampling in connection to a greedy strategy. GASOLINE overcomes the limits of current approaches by producing biologically significant alignments within a feasible running time, even for very large input instances. The method has been extensively tested on a database of real and synthetic biological networks. A comprehensive comparison with state-of-the art algorithms clearly shows that GASOLINE yields the best results in terms of both reliability of alignments and running time on real biological networks and results comparable in terms of quality of alignments on synthetic networks. GASOLINE has been developed in Java, and is available, along with all the computed alignments, at the following URL: http://ferrolab.dmi.unict.it/gasoline/gasoline.html.
- Published
- 2014
- Full Text
- View/download PDF
4. MIDClass: microarray data classification by association rules and gene expression intervals.
- Author
-
Rosalba Giugno, Alfredo Pulvirenti, Luciano Cascione, Giuseppe Pigola, and Alfredo Ferro
- Subjects
Medicine ,Science - Abstract
We present a new classification method for expression profiling data, called MIDClass (Microarray Interval Discriminant CLASSifier), based on association rules. It classifies expressions profiles exploiting the idea that the transcript expression intervals better discriminate subtypes in the same class. A wide experimental analysis shows the effectiveness of MIDClass compared to the most prominent classification approaches.
- Published
- 2013
- Full Text
- View/download PDF
5. GRAPES: a software for parallel searching on biological graphs targeting multi-core architectures.
- Author
-
Rosalba Giugno, Vincenzo Bonnici, Nicola Bombieri, Alfredo Pulvirenti, Alfredo Ferro, and Dennis Shasha
- Subjects
Medicine ,Science - Abstract
Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP), offer scalable computing power, currently published software implementations for indexing and graph matching are fundamentally sequential. As a consequence, such software implementations (i) do not fully exploit available parallel computing power and (ii) they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA, proteins, protein contact maps and protein interactions networks.
- Published
- 2013
- Full Text
- View/download PDF
6. miRandola: extracellular circulating microRNAs database.
- Author
-
Francesco Russo, Sebastiano Di Bella, Giovanni Nigita, Valentina Macca, Alessandro Laganà, Rosalba Giugno, Alfredo Pulvirenti, and Alfredo Ferro
- Subjects
Medicine ,Science - Abstract
MicroRNAs are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular messenger RNAs. They are frequently dysregulated in cancer and have shown great potential as tissue-based markers for cancer classification and prognostication. microRNAs are also present in extracellular human body fluids such as serum, plasma, saliva, and urine. Most of circulating microRNAs are present in human plasma and serum cofractionate with the Argonaute2 (Ago2) protein. However, circulating microRNAs have been also found in membrane-bound vesicles such as exosomes. Since microRNAs circulate in the bloodstream in a highly stable, extracellular form, they may be used as blood-based biomarkers for cancer and other diseases. A knowledge base of extracellular circulating miRNAs is a fundamental tool for biomedical research. In this work, we present miRandola, a comprehensive manually curated classification of extracellular circulating miRNAs. miRandola is connected to miRò, the miRNA knowledge base, allowing users to infer the potential biological functions of circulating miRNAs and their connections with phenotypes. The miRandola database contains 2132 entries, with 581 unique mature miRNAs and 21 types of samples. miRNAs are classified into four categories, based on their extracellular form: miRNA-Ago2 (173 entries), miRNA-exosome (856 entries), miRNA-HDL (20 entries) and miRNA-circulating (1083 entries). miRandola is available online at: http://atlas.dmi.unict.it/mirandola/index.html.
- Published
- 2012
- Full Text
- View/download PDF
7. Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material.
- Author
-
Alessandro Laganà, Francesco Russo, Catarina Sismeiro, Rosalba Giugno, Alfredo Pulvirenti, and Alfredo Ferro
- Subjects
Medicine ,Science - Abstract
BACKGROUND: Chromosomal fragile sites are heritable specific loci especially prone to breakage. Some of them are associated with human genetic disorders and several studies have demonstrated their importance in genome instability in cancer. MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional gene regulation and their involvement in several diseases such as cancer has been widely demonstrated. The altered expression of miRNAs is sometimes due to chromosomal rearrangements and epigenetic events, thus it is essential to study miRNAs in the context of their genomic locations, in order to find significant correlations between their aberrant expression and the phenotype. PRINCIPAL FINDINGS: Here we use statistical models to study the incidence of human miRNA genes on fragile sites and their association with cancer-specific translocation breakpoints, repetitive elements, and CpG islands. Our results show that, on average, fragile sites are denser in miRNAs and also in protein coding genes. However, the distribution of miRNAs and protein coding genes in fragile versus non-fragile sites depends on chromosome. We find also a positive correlation between fragility and repeats, and between miRNAs and CpG islands. CONCLUSION: Our results show that the relationship between site fragility and miRNA density is far more complex than previously thought. For example, we find that protein coding genes seem to be following similar patterns as miRNAs, if considered their overall distribution. However, once we allow for differences at the chromosome level in our statistical analysis, we find that distribution of miRNA and protein coding genes in fragile sites is very different from that of miRNA. This is a novel result that we believe may help discover new potential correlations between the localization of miRNAs and their crucial role in biological processes and in the development of diseases.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.