1. Propagating density spikes in light-powered motility-ratchets.
- Author
-
Lozano C, Liebchen B, Ten Hagen B, Bechinger C, and Löwen H
- Abstract
Combining experiments and computer simulations, we use a spatially periodic and flashing light-field to direct the motion of phototactic active colloids. Here, the colloids self-organize into a density spike pattern, which resembles a shock wave and propagates over long distances, almost without dispersing. The underlying mechanism involves a synchronization of the colloids with the light-field, so that particles see the same intensity gradient each time the light-pattern is switched on, but no gradient in between (for example). This creates pulsating transport whose strength and direction can be controlled via the flashing protocol and the self-propulsion speed of the colloids. Our results might be useful for drug delivery applications and can be used to segregate active colloids by their speed.
- Published
- 2019
- Full Text
- View/download PDF