1. Pd@TiO2/carbon nanohorn electrocatalysts: Reversible CO2 hydrogenation to formic acid
- Author
-
Lucia Nasi, Claudio Tavagnacco, Paolo Fornasiero, Maria Victoria Bracamonte, Maurizio Prato, Michele Melchionna, Angela Giuliani, Marcella Bonchio, Tiziano Montini, Melchionna, M., Bracamonte, M. V., Giuliani, A., Nasi, L., Montini, T., Tavagnacco, C., Bonchio, M., Fornasiero, P., and Prato, M.
- Subjects
CARBON NANOHORNS ,formic acid ,Formic acid ,02 engineering and technology ,Single-walled carbon nanohorn ,Overpotential ,010402 general chemistry ,Electrocatalyst ,CO2 REDUCTION ,7. Clean energy ,01 natural sciences ,Environmental Chemistry ,Renewable Energy, Sustainability and the Environment ,Nuclear Energy and Engineering ,Pollution ,Enzyme catalysis ,Catalysis ,C based electrocatalysts ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,purl.org/becyt/ford/1.4 [https] ,Dehydrogenation ,Renewable Energy ,Bimetallic strip ,reversible CO2 hydrogenation ,formic acid, CO2 reduction ,Sustainability and the Environment ,PD NANOPARTICLES ,Chemistry ,Otras Ciencias Químicas ,carbon dioxide reduction ,electrocatalysis ,titanium dioxide ,palladium ,Ciencias Químicas ,C based electrocatalyst ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Chemical engineering ,13. Climate action ,CO2 reduction ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
Direct conversion of carbon dioxide to formic acid at thermodynamic equilibrium is an advantage of enzymatic catalysis, hardly replicated by synthetic analogs, but of high priority for carbon-neutral energy schemes. The bio-mimetic potential of totally inorganic Pd@TiO2 nanoparticles is envisioned herein in combination with Single Walled Carbon NanoHorns (SWCNHs). The high surface nano-carbon entanglement templates a wide distribution of "hard-soft" bimetallic sites where the small Pd nanoparticles (1.5 nm) are shielded within the TiO2 phase (Pd@TiO2), while being electrically wired to the electrode by the nanocarbon support. This hybrid electrocatalyst activates CO2 reduction to formic acid at near zero overpotential in the aqueous phase (onset potential at E < -0.05 V vs. RHE, pH = 7.4), while being able to evolve hydrogen via sequential formic acid dehydrogenation. The net result hints at a unique CO2 "circular catalysis" where formic acid versus H2 selectivity is addressable by flow-reactor technology. Fil: Melchionna, Michele. Università degli Studi di Trieste; Italia Fil: Bracamonte, Maria Victoria. Università degli Studi di Trieste; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Giuliani, Angela. Università degli Studi di Trieste; Italia Fil: Nasi, Lucia. Istituto Dei Materiali Per L'elettronica Ed Il Magnetismo; Italia Fil: Montini, Tiziano. Università degli Studi di Trieste; Italia Fil: Tavagnacco, Claudio. Università degli Studi di Trieste; Italia Fil: Bonchio, Marcella. Università di Padova; Italia Fil: Fornasiero, P. Università degli Studi di Trieste; Italia Fil: Prato, Maurizio. Università degli Studi di Trieste; Italia
- Published
- 2018
- Full Text
- View/download PDF