9 results on '"Guruswamy G"'
Search Results
2. Colloidal assembly by directional ice templating.
- Author
-
Biswas B, Misra M, Bisht AS, Kumar SK, and Kumaraswamy G
- Abstract
We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectional freezing. We work at sufficiently low colloid concentrations, such that the particles do not percolate on freezing. When the aqueous dispersion freezes, ice crystals force polymer-coated particles and cross-linker into close proximity. This results in the formation of cross-linked clusters of particles at ice crystal boundaries. We vary the particle volume fraction from φ ∼ 2.5 × 10-3 to φ ∼ 5.0 × 10-2 and observe that there is a transition from isolated single particles to increasingly large sized clusters. Most of the clusters formed under these conditions are either linear, two-particle wide chains, or sheet-like aggregates. The probability (Pn) of clusters containing n particles (n > 2) obeys a power law Pn ∼ n-η, where η strongly depends on the particle concentration in the dispersion, varying from 2.10 (for φ ∼ 5.0 × 10-2) to 3.03 (for φ ∼ 2.5 × 10-3). This change in η is qualitatively different from the case of isotropic freezing, where η is particle concentration-independent and depends only on the ice nucleation density. To understand the differences between isotropic and directional ice templating, we performed lattice simulations of a highly simplified model, where ice crystals grow at a constant rate to force clustering. We ignore hydrodynamic interactions and ice growth instabilities. Despite ignoring these experimental details, the simulations capture the experimental results, nearly quantitatively. As the ice crystals grow and the space available to the colloids "closes up" so that the particles cluster to form aggregates, crystallization protocol-induced differences in the geometry of these "closed up" spaces determine the scaling behaviour of Pn.
- Published
- 2021
- Full Text
- View/download PDF
3. On the sensitivity of alginate rheology to composition.
- Author
-
Suresh K, Häring M, Kumaraswamy G, and Díaz Díaz D
- Abstract
The linear response of alginate-phenyl boronic acid (Alg-PBA) esters shows a universal, composition-independent viscoelastic fluid-like behaviour. Reversible association of alginates governs their rheology at all compositions (viz. at all alginate concentrations and solution pH). However, their high strain behaviour is very sensitive to composition. Tuning composition affords liquids that neck to form filaments capable of being drawn to large elongations without failure. We interpret our data by invoking strain-dependent association and dissociation rates for the alginates. High association rates at high strain result in materials with viscoelastic liquid like behaviour.
- Published
- 2019
- Full Text
- View/download PDF
4. Preparation of macroporous scaffolds with holes in pore walls and pressure driven flows through them.
- Author
-
Chatterjee S, Potdar A, Kuhn S, and Kumaraswamy G
- Abstract
Controlling the pore architecture in macroporous scaffolds has important implications for their use as reactor packings and as catalyst supports. We report the preparation of a macroporous structure, where the pore walls are perforated by holes. These materials are prepared by modification of the ice-templating protocol developed in our group. We freeze a dispersion of colloidal silica, polymer and cross-linker in a water/acetonitrile medium and allow crosslinking to proceed in the frozen state. The presence of a small fraction of acetonitrile (varying between 1.6% to 6.4%) results in the formation of holes in the pore walls. Increasing the acetonitrile concentration changes the pore size distribution, and produces smaller pores on average. This also results in an increasing fraction of the wall area being covered by small pores, of the order of a few microns in size. Perforation of the walls by pores does not change the overall porosity or modulus of the scaffolds. However, the introduction of pores leads to a drastic reduction in the pressure drop required to pump liquid through the scaffolds. The observed residence time distribution (RTD) in the scaffolds is represented by two plug flow reactors (PFRs) in parallel. The RTD results indicate that increasing the hole fraction in the pore walls results in increased channelling which explains the aforementioned decreased pressure drop during pressure driven flow., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2018
- Full Text
- View/download PDF
5. Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces.
- Author
-
Kumar M, Kulkarni MA, Chembu NG, Banpurkar A, and Kumaraswamy G
- Abstract
Efficient delivery of aqueous sprays to hydrophobic surfaces is the key technological challenge in a wide variety of applications, including pesticide delivery to plants. To account for losses due to bouncing of pesticide sprays off hydrophobic leaf surfaces, a large excess of pesticide is typically employed, resulting in environmentally hazardous run-offs that contaminate soil and ground water. We demonstrate that aqueous dispersions of glycerol monooleate nanoparticles, called cubosomes, wet hydrophobic and superhydrophobic surfaces and adhere to them. Cubosomes comprise glycerol monooleate lipid molecules self-assembled into a double diamond cubic phase, that form stable aqueous dispersions that are sterically stabilized using amphiphilic block copolymers. We use high speed imaging to monitor the spreading and retraction of aqueous drops impinged on model hydrophobic substrates and on superhydrophobic lotus leaves. We show that cubosomes diffuse to hydrophobic substrates and reorganize to form a thin, ≈2 nm adsorbed lipid layer during the millisecond time scales that characterize drop impact. This adsorbed film drastically reduces the water contact angle, transforming the hydrophobic surface to hydrophilic, thus facilitating retention of the aqueous drop on the surface. Aqueous drops of cubosomes impinged at low velocities on inclined natural superhydrophobic lotus leaf surfaces do not roll off, unlike drops of water or surfactant solutions. When sprayed on inclined lotus leaves, corresponding to the case of high velocity drop impingement, cubosome dispersions form a continuous wetting film. Our results have important implications for efficient, environment-friendly delivery of pesticide sprays.
- Published
- 2018
- Full Text
- View/download PDF
6. Capillary uptake in macroporous compressible sponges.
- Author
-
Chatterjee S, Doshi P, and Kumaraswamy G
- Abstract
The capillarity-driven uptake of liquid in swellable, highly porous sponges is of significant industrial importance. Sponges prepared using polymers and their composites with carbon nanotubes and graphene have been reported, with extraordinary solvent uptake capacities and with the ability to separate oil from water. However, the effect of systematic variation of sponge characteristics on solvent uptake has not been investigated. Here, we report experiments that study capillary uptake in a variety of flexible, centimetre-sized macroporous cylindrical sponges. We used ice-templating to prepare a series of model macroporous sponges in which the porosity, modulus and composition were systematically varied. We investigated two kinds of sponge: (a) those composed purely of cross-linked polymers and (b) those prepared as composites of inorganic particles and polymers. Both kinds of sponge are flexible and exhibit elastic recovery after large compressive deformation. All sponges were characterized thoroughly with respect to their pore microstructure and elastic modulus. When one end of a sponge is plunged into a large reservoir, water rises through capillary action against gravity. We observed a transition from an inertial capillary regime, where the liquid column height rose linearly with time, t, to a viscous capillary regime, where the liquid height rose with time t
0.5 . We showed that these results can be rationalized using analyses developed for rigid sponges. We combined differential momentum balance equations for uptake in rigid capillaries with the phenomenological Ergun-Forchheimer relations to account for the effect of the sponge microstructure. This approach works remarkably well in the viscous capillary regime and shows that capillary uptake is governed primarily by the total porosity and pore dimensions of soft sponges.- Published
- 2017
- Full Text
- View/download PDF
7. Phase behaviour of the ternary system: monoolein-water-branched polyethylenimine.
- Author
-
Kumar M and Kumaraswamy G
- Subjects
- Micelles, Temperature, Water chemistry, Glycerides chemistry, Lipids chemistry, Polyethyleneimine chemistry, Polymers chemistry
- Abstract
Addition of a branched polymer, polyethyleneimine, significantly alters the organization of a glycerol monooleate (GMO) lipid-water system. We present detailed data over a wide range of compositions (water content from 10 to 40%, relative to GMO and PEI fractions from 0 to 4%) and temperatures (25-80 °C). The PEI molecular weight effects are examined using polymers over a range from 0.8 to 25 kDa. Addition of PEI induces the formation of higher curvature reverse phases. In particular, PEI induces the formation of the Fd3m phase: a discontinuous phase comprising reverse micelles of two different sizes stacked in a cubic AB2 crystal. The formation of the Fd3m phase at room temperature, upon addition of polar, water soluble PEI is unusual, since such phases typically are formed only upon addition of apolar oils. The largest stability window for the Fd3m phase is observed for PEI with a molecular weight = 2 kDa. We discuss how PEI influences the formation and stability of high curvature phases.
- Published
- 2015
- Full Text
- View/download PDF
8. Compact polar moieties induce lipid-water systems to form discontinuous reverse micellar phase.
- Author
-
Kumar M, Patil NG, Choudhury CK, Roy S, Ambade AV, and Kumaraswamy G
- Abstract
The role of molecular interactions in governing lipid mesophase organization is of fundamental interest and has technological implications. Herein, we describe an unusual pathway for monoolein/water reorganization from a bicontinuous mesophase to a discontinuous reverse micellar assembly, directed by the inclusion of polar macromolecules. This pathway is very different from those reported earlier, wherein the Fd3m phase formed only upon addition of apolar oils. Experiments and molecular dynamics simulations indicate that hydrophilic ternary additives capable of inducing discontinuous phase formation must (i) interact strongly with the monoolein head group and (ii) have a compact molecular architecture. We present a detailed investigation that contrasts a monoolein-water system containing polyamidoamine (PAMAM) dendrons with one containing their linear analogs. The Fd3m phase forms only on the addition of PAMAM dendrons but not their linear analogs. Thus, the dendritic architecture of PAMAM plays an important role in determining lipid mesophase behavior. Both dendrons and their linear analogs interact strongly with monoolein through their amine groups. However, while linear polymers adsorb and spread on monoolein, dendrons form aggregates that interact with the lipid. Dendrons induce formation of an intermediate reverse hexagonal phase, which subsequently restructures into the Fd3m phase. Finally, we demonstrate that other additives with compact structures that are known to interact with monoolein, such as branched polyethylenimine and polyhedral silsesquioxane cages, also induce the formation of the Fd3m phase.
- Published
- 2015
- Full Text
- View/download PDF
9. Synthesis of functional hybrid silica scaffolds with controllable hierarchical porosity by dynamic templating.
- Author
-
Ganai AK, Kumari S, Sharma KP, Panda C, Kumaraswamy G, and Gupta SS
- Abstract
We report a facile one-pot synthesis of hierarchically porous scaffolds, with independent control over nanoparticle mesoporosity and scaffold macroporosity. Our technique combines the chemistry of mesoporous silica nanoparticles with the control afforded by dynamic templating of surfactant mesophases. These materials are readily functionalizable and allow controllable spatial variation in macroporosity., (This journal is © The Royal Society of Chemistry 2012)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.