1. Investigating the behavior of diffusion models for accelerating electronic structure calculations.
- Author
-
Rothchild D, Rosen AS, Taw E, Robinson C, Gonzalez JE, and Krishnapriyan AS
- Abstract
We present an investigation of diffusion models for molecular generation, with the aim of better understanding how their predictions compare to the results of physics-based calculations. The investigation into these models is driven by their potential to significantly accelerate electronic structure calculations using machine learning, without requiring expensive first-principles datasets for training interatomic potentials. We find that the inference process of a popular diffusion model for de novo molecular generation is divided into an exploration phase, where the model chooses the atomic species, and a relaxation phase, where it adjusts the atomic coordinates to find a low-energy geometry. As training proceeds, we show that the model initially learns about the first-order structure of the potential energy surface, and then later learns about higher-order structure. We also find that the relaxation phase of the diffusion model can be re-purposed to sample the Boltzmann distribution over conformations and to carry out structure relaxations. For structure relaxations, the model finds geometries with ∼10× lower energy than those produced by a classical force field for small organic molecules. Initializing a density functional theory (DFT) relaxation at the diffusion-produced structures yields a >2× speedup to the DFT relaxation when compared to initializing at structures relaxed with a classical force field., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2024
- Full Text
- View/download PDF