4 results on '"Van de Sande, Marie"'
Search Results
2. Disentangling physics and chemistry in AGB outflows: revealing degeneracies when adding complexity.
- Author
-
Van de Sande, Marie, Walsh, Catherine, and Millar, Tom J.
- Abstract
Observations of the outflows of asymptotic giant branch (AGB) stars continue to reveal their chemical and dynamical complexity. Spherical asymmetries, such as spirals and disks, are prevalent and thought to be caused by binary interaction with a (sub)stellar companion. Furthermore, high density outflows show evidence of dust–gas interactions. The classical chemical model of these outflows – a gas-phase only, spherically symmetric chemical kinetics model – is hence not appropriate for the majority of observed outflows. We have included several physical and chemical advancements step-by-step: a porous density distribution, dust–gas chemistry, and internal UV photons originating from a close-by stellar companion. Now, we combine these layers of complexity into the most chemically and physically advanced chemical kinetics model of AGB outflows to date. By varying over all model parameters, we obtain a holistic view of the outflow's composition and how it (inter)depends on the different complexities. A stellar companion has the largest influence, especially when combined with a porous outflow. We compile sets of gas-phase molecules that trace the importance of dust–gas chemistry and allow us to infer the presence of a companion and porosity of the outflow. This shows that our new chemical model can be used to infer physical and chemical properties of specific outflows, as long as a suitable range of molecules is observed. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Experimental and theoretical study of the low-temperature kinetics of the reaction of CN with CH2O and implications for interstellar environments.
- Author
-
West, Niclas A., Li, Lok Hin Desmond, Millar, Tom J., Van de Sande, Marie, Rutter, Edward, Blitz, Mark A., Lehman, Julia H., Decin, Leen, and Heard, Dwayne E.
- Abstract
Rate coefficients for the reaction of CN with CH
2 O were measured for the first time below room temperature in the range 32–103 K using a pulsed Laval nozzle apparatus together with the Pulsed Laser Photolysis–Laser-Induced Fluorescence technique. The rate coefficients exhibited a strong negative temperature dependence, reaching (4.62 ± 0.84) × 10−11 cm3 molecule−1 s−1 at 32 K, and no pressure dependence was observed at 70 K. The potential energy surface (PES) of the CN + CH2 O reaction was calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory, with the lowest energy channel to reaction characterized by the formation of a weakly-bound van der Waals complex, bound by 13.3 kJ mol−1 , prior to two transition states with energies of −0.62 and 3.97 kJ mol−1 , leading to the products HCN + HCO or HNC + HCO, respectively. For the formation of formyl cyanide, HCOCN, a large activation barrier of 32.9 kJ mol−1 was calculated. Reaction rate theory calculations were performed with the MESMER (Master Equation Solver for Multi Energy well Reactions) package on this PES to calculate rate coefficients. While this ab initio description provided good agreement with the low-temperature rate coefficients, it was not capable of describing the high-temperature experimental rate coefficients from the literature. However, increasing the energies and imaginary frequencies of both transition states allowed MESMER simulations of the rate coefficients to be in good agreement with data spanning 32–769 K. The mechanism for the reaction is the formation of a weakly-bound complex followed by quantum mechanical tunnelling through the small barrier to form HCN + HCO products. MESMER calculations showed that channel generating HNC is not important. MESMER simulated the rate coefficients from 4–1000 K which were used to recommend best-fit modified Arrhenius expressions for use in astrochemical modelling. The UMIST Rate12 (UDfa) model yielded no significant changes in the abundances of HCN, HNC, and HCO for a variety of environments upon inclusion of rate coefficients reported here. The main implication from this study is that the title reaction is not a primary formation route to the interstellar molecule formyl cyanide, HCOCN, as currently implemented in the KIDA astrochemical model. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
4. Experimental and theoretical study of the low-temperature kinetics of the reaction of CN with CH 2 O and implications for interstellar environments.
- Author
-
West NA, Li LHD, Millar TJ, Van de Sande M, Rutter E, Blitz MA, Lehman JH, Decin L, and Heard DE
- Abstract
Rate coefficients for the reaction of CN with CH
2 O were measured for the first time below room temperature in the range 32-103 K using a pulsed Laval nozzle apparatus together with the Pulsed Laser Photolysis-Laser-Induced Fluorescence technique. The rate coefficients exhibited a strong negative temperature dependence, reaching (4.62 ± 0.84) × 10-11 cm3 molecule-1 s-1 at 32 K, and no pressure dependence was observed at 70 K. The potential energy surface (PES) of the CN + CH2 O reaction was calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory, with the lowest energy channel to reaction characterized by the formation of a weakly-bound van der Waals complex, bound by 13.3 kJ mol-1 , prior to two transition states with energies of -0.62 and 3.97 kJ mol-1 , leading to the products HCN + HCO or HNC + HCO, respectively. For the formation of formyl cyanide, HCOCN, a large activation barrier of 32.9 kJ mol-1 was calculated. Reaction rate theory calculations were performed with the MESMER (Master Equation Solver for Multi Energy well Reactions) package on this PES to calculate rate coefficients. While this ab initio description provided good agreement with the low-temperature rate coefficients, it was not capable of describing the high-temperature experimental rate coefficients from the literature. However, increasing the energies and imaginary frequencies of both transition states allowed MESMER simulations of the rate coefficients to be in good agreement with data spanning 32-769 K. The mechanism for the reaction is the formation of a weakly-bound complex followed by quantum mechanical tunnelling through the small barrier to form HCN + HCO products. MESMER calculations showed that channel generating HNC is not important. MESMER simulated the rate coefficients from 4-1000 K which were used to recommend best-fit modified Arrhenius expressions for use in astrochemical modelling. The UMIST Rate12 (UDfa) model yielded no significant changes in the abundances of HCN, HNC, and HCO for a variety of environments upon inclusion of rate coefficients reported here. The main implication from this study is that the title reaction is not a primary formation route to the interstellar molecule formyl cyanide, HCOCN, as currently implemented in the KIDA astrochemical model.- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.