1. Exploiting in situ NMR to monitor the formation of a metal–organic framework
- Author
-
Alison Paul, Timothy L. Easun, Hamish H.-M. Yeung, Colan E. Hughes, Kenneth D. M. Harris, and Corey L. Jones
- Subjects
In situ ,Materials science ,Kinetics ,Nucleation ,Supramolecular chemistry ,General Chemistry ,law.invention ,Chemistry ,law ,Phase (matter) ,Proton NMR ,Physical chemistry ,Metal-organic framework ,Crystallization - Abstract
The formation processes of metal–organic frameworks are becoming more widely researched using in situ techniques, although there remains a scarcity of NMR studies in this field. In this work, the synthesis of framework MFM-500(Ni) has been investigated using an in situ NMR strategy that provides information on the time-evolution of the reaction and crystallization process. In our in situ NMR study of MFM-500(Ni) formation, liquid-phase 1H NMR data recorded as a function of time at fixed temperatures (between 60 and 100 °C) afford qualitative information on the solution-phase processes and quantitative information on the kinetics of crystallization, allowing the activation energies for nucleation (61.4 ± 9.7 kJ mol−1) and growth (72.9 ± 8.6 kJ mol−1) to be determined. Ex situ small-angle X-ray scattering studies (at 80 °C) provide complementary nanoscale information on the rapid self-assembly prior to MOF crystallization and in situ powder X-ray diffraction confirms that the only crystalline phase present during the reaction (at 90 °C) is phase-pure MFM-500(Ni). This work demonstrates that in situ NMR experiments can shed new light on MOF synthesis, opening up the technique to provide better understanding of how MOFs are formed., A new in situ NMR methodology for studying the formation processes of MOFs is reported, supported by SAXS and PXRD experiments. Synthesis of a phosphonate-based MOF is described, from molecular aggregation through to nucleation and crystallisation.
- Published
- 2021