1. Modelling quenching mechanisms of disordered molecular systems in the presence of molecular aggregates
- Author
-
Giacomo Fanciullo, Irene Conti, Pascal Didier, Andrey Klymchenko, Jérémie Léonard, Marco Garavelli, Ivan Rivalta, University of Bologna/Università di Bologna, Laboratoire de Bioimagerie et Pathologies (LBP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie - UMR5182 (LC), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE09-0006,LHnanoMat,Antenne collectrice de lumière pour la détection de molécules individuelles(2019), univOAK, Archive ouverte, Antenne collectrice de lumière pour la détection de molécules individuelles - - LHnanoMat2019 - ANR-19-CE09-0006 - AAPG2019 - VALID, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Fanciullo, Giacomo, Conti, Irene, Didier, Pascal, Klymchenko, Andrey, Léonard, Jérémie, Garavelli, Marco, and Rivalta, Ivan
- Subjects
Exciton dynamics, energy transfer, molecular aggregates, quenching mechanisms, ultrafast spectroscopy ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,General Physics and Astronomy ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Physical and Theoretical Chemistry - Abstract
A macroscopic model of exciton density decays in disordered molecular systems, including contributions from molecular aggregate quenchers, is proposed. The model can be applied to ultrafast decays of dyes and for global fitting of experimental data. , Exciton density dynamics recorded in time-resolved spectroscopic measurements is a useful tool to recover information on energy transfer (ET) processes that can occur at different timescales, up to the ultrafast regime. Macroscopic models of exciton density decays, involving both direct Förster-like ET and diffusion mechanisms for exciton–exciton annihilation, are largely used to fit time-resolved experimental data but generally neglect contributions from molecular aggregates that can work as quenching species. In this work, we introduce a macroscopic model that includes contributions from molecular aggregate quenchers in a disordered molecular system. As an exemplifying case, we considered a homogenous distribution of rhodamine B dyes embedded in organic nanoparticles to set the initial parameters of the proposed model. The influence of such model parameters is systematically analysed, showing that the presence of molecular aggregate quenchers can be monitored by evaluating the exciton density long time decays. We showed that the proposed model can be applied to molecular systems with ultrafast decays, and we anticipated that it could be used in future studies for global fitting of experimental data with potential support from first-principles simulations.
- Published
- 2022
- Full Text
- View/download PDF