1. Detecting Changes in Tissue Perfusion With Hyperspectral Imaging and Thermal Imaging Following Endovascular Treatment for Peripheral Arterial Disease
- Author
-
Simone F. Kleiss, Kirsten F. Ma, Mostafa El Moumni, Çagdas Ünlü, Thomas S. Nijboer, Richte C. L. Schuurmann, Reinoud P. H. Bokkers, Jean-Paul P. M. de Vries, Basic and Translational Research and Imaging Methodology Development in Groningen (BRIDGE), and Robotics and image-guided minimally-invasive surgery (ROBOTICS)
- Subjects
Radiology, Nuclear Medicine and imaging ,Surgery ,Cardiology and Cardiovascular Medicine - Abstract
Purpose Hyperspectral imaging (HSI) and thermal imaging allow contact-free tissue perfusion measurements and may help determine the effect of endovascular treatment (EVT) in patients with peripheral arterial disease. This study aimed to detect changes in perfusion with HSI and thermal imaging peri-procedurally and determine whether these changes can identify limbs that show clinical improvement after 6 weeks. Methods Patients with Rutherford class 2–6 scheduled for EVT were included prospectively. Hyperspectral imaging and thermal imaging were performed directly before and after EVT. Images were taken from the lateral side of the calves and plantar side of the feet. Concentrations of (de)oxyhemoglobin, oxygen saturation, and skin temperature were recorded. Angiographic results were determined on completion angiogram. Clinical improvement 6 weeks after EVT was defined as a decrease ≥ one Rutherford class. Peri-procedural changes in perfusion parameters were compared between limbs with and without good angiographic results or clinical improvement. To identify limbs with clinical improvement, receiver operating characteristic (ROC) curves were used to determine cutoff values for change in HSI. Results Included were 23 patients with 29 treated limbs. Change in HSI values and temperature was not significantly different between limbs with good and poor angiographic results. Change in peri-procedural deoxyhemoglobin, determined by HSI, at the calves and feet was significantly different between limbs with and without clinical improvement at 6 week follow-up (p=0.027 and p=0.017, respectively). The ROC curve for change in deoxyhemoglobin at the calves showed a cutoff value of ≤1.0, and ≤−0.5 at the feet, which were discriminative for clinical improvement (sensitivity 77%; specificity 75% and sensitivity 62%; specificity 88%, respectively). Conclusions HSI can detect changes in perfusion at the calves after EVT in patients with Rutherford class 2–6. Peri-procedural deoxyhemoglobin changes at the calves and feet are significantly different between limbs with and without clinical improvement. Decrease in deoxyhemoglobin directly after EVT may identify limbs that show clinical improvement 6 weeks after EVT.
- Published
- 2023