1. Improving Prediction of Long-Term Care Utilization Through Patient-Reported Measures: Cross-Sectional Analysis of High-Need U.S. Veterans Affairs Patients.
- Author
-
Jacobs, Josephine C., Maciejewski, Matthew L., Wagner, Todd H., Van Houtven, Courtney H., Lo, Jeanie, Greene, Liberty, and Zulman, Donna M.
- Abstract
This article examines the relative merit of augmenting an electronic health record (EHR)-derived predictive model of institutional long-term care (LTC) use with patient-reported measures not commonly found in EHRs. We used survey and administrative data from 3,478 high-risk Veterans aged ≥65 in the U.S. Department of Veterans Affairs, comparing a model based on a Veterans Health Administration (VA) geriatrics dashboard, a model with additional EHR-derived variables, and a model that added survey-based measures (i.e., activities of daily living [ADL] limitations, social support, and finances). Model performance was assessed via Akaike information criteria, C-statistics, sensitivity, and specificity. Age, a dementia diagnosis, Nosos risk score, social support, and ADL limitations were consistent predictors of institutional LTC use. Survey-based variables significantly improved model performance. Although demographic and clinical characteristics found in many EHRs are predictive of institutional LTC, patient-reported function and partnership status improve identification of patients who may benefit from home- and community-based services. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF