1. Milking CowMask for Semi-supervised Image Classification
- Author
-
French, Geoff, Oliver, Avital, and Salimans, Tim
- Subjects
FOS: Computer and information sciences ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Consistency regularization is a technique for semi-supervised learning that underlies a number of strong results for classification with few labeled data. It works by encouraging a learned model to be robust to perturbations on unlabeled data. Here, we present a novel mask-based augmentation method called CowMask. Using it to provide perturbations for semi-supervised consistency regularization, we achieve a state-of-the-art result on ImageNet with 10% labeled data, with a top-5 error of 8.76% and top-1 error of 26.06%. Moreover, we do so with a method that is much simpler than many alternatives. We further investigate the behavior of CowMask for semi-supervised learning by running many smaller scale experiments on the SVHN, CIFAR-10 and CIFAR-100 data sets, where we achieve results competitive with the state of the art, indicating that CowMask is widely applicable. We open source our code at https://github.com/google-research/google-research/tree/master/milking_cowmask, 11 pages, 2 figures, submitted to NeurIPS 2020
- Published
- 2022
- Full Text
- View/download PDF