1. Automatic x-ray image segmentation and clustering for threat detection
- Author
-
Carole Belloni, Nabil Aouf, David Nam, Odysseas Kechagias-Stamatis, Centre for Electronic Warfare (Cranfield University) (CEW), Lab-STICC_IMTA_CID_PRASYS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), Institut Mines-Télécom [Paris] (IMT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-Institut Mines-Télécom [Paris] (IMT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL), Département lmage et Traitement Information (IMT Atlantique - ITI), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)
- Subjects
020301 aerospace & aeronautics ,Computer science ,Segmentation-based object categorization ,business.industry ,TK ,Scale-space segmentation ,Image processing ,02 engineering and technology ,Image segmentation ,Domain (software engineering) ,0203 mechanical engineering ,Region growing ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Segmentation ,Computer vision ,Artificial intelligence ,business ,Cluster analysis ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Firearms currently pose a known risk at the borders. The enormous number of X-ray images from parcels, luggage and freight coming into each country via rail, aviation and maritime presents a continual challenge to screening officers. To further improve UK capability and aid officers in their search for firearms we suggest an automated object segmentation and clustering architecture to focus officers' attentions to high-risk threat objects. Our proposal utilizes dual-view single/ dual-energy 2D X-ray imagery and is a blend of radiology, image processing and computer vision concepts. It consists of a triple-layered processing scheme that supports segmenting the luggage contents based on the effective atomic number of each object, which is then followed by a dual-layered clustering procedure. The latter comprises of mild and a hard clustering phase. The former is based on a number of morphological operations obtained from the image-processing domain and aims at disjoining mild-connected objects and to filter noise. The hard clustering phase exploits local feature matching techniques obtained from the computer vision domain, aiming at sub-clustering the clusters obtained from the mild clustering stage. Evaluation on highly challenging single and dual-energy X-ray imagery reveals the architecture's promising performance.
- Published
- 2017