1. Optimization of detonation velocity measurements using a chirped fiber Bragg grating
- Author
-
J. Luc, Vincent Chuzeville, G. Zaniolo, L. Jacquet, Sylvain Magne, Alexandre Lefrançois, Yohan Barbarin, Antoine Osmont, GRAMAT (DAM/GRAMAT), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Capteurs Fibres Optiques (LCFO), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Pickrell, G and Udd, E and Du, HH, Laboratoire Capteurs et Architectures Electroniques (LCAE), Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
Materials science ,Explosive material ,Astrophysics::High Energy Astrophysical Phenomena ,Instrumentation ,Detonation ,High Explosives ,Velocity Measurement ,detonics ,Signal ,Optics ,Fiber Bragg grating ,sensor ,[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Fiber Bragg Grating ,instrumentation ,Wavefront ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Detonation velocity ,Distributed and Quasi-distributed sensing ,Optical Fiber Sensor ,Fiber optic sensor ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,business - Abstract
Conference on Fiber Optic Sensors and Applications XII, Baltimore, MD, APR 22-23, 2015; International audience; Dynamic measurements of detonation velocity profiles are performed using long Chirped Fiber Bragg Gratings (CFBGs). Such thin probes, with a diameter of typically 150 µm, are inserted directly into a high explosive sample or simply positioned laterally. During the detonation, the width of the reflected optical spectrum is continuously reduced by the propagation of the wave-front, which physically shortens the CFBG. The reflected optical intensity delivers a ramp down signal type, which is directly related to the detonation velocity profile. Experimental detonation velocity measurements were performed on the side of three different high explosives (TNT, B2238 and V401) in a bare cylindrical stick configuration (diameter: 2 inches, height: 10 inches). The detonation velocity range covered was 6800 to 9000 m/s. The extraction of the detonation velocity profiles requires a careful calibration of the system and of the CFBG used. A calibration procedure was developed, with the support of optical simulations, to cancel out the optical spectrum distortions from the different optical components and to determine the wavelength-position transfer function of the CFBG in a reproducible way. The 40-mm long CFBGs were positioned within the second half of the three high explosive cylinders. The excellent linearity of the computed position-time diagram confirms that the detonation was established for the three high explosives. The fitted slopes of the position-time diagram give detonation velocity values which are in very good agreement with the classical measurements obtained from discrete electrical shorting pins.
- Published
- 2015