1. Water populations in restricted environments of lipid membrane interphases
- Author
-
Gustavo A. Appignanesi, L. M. Alarcón, M. de los Angeles Frías, M. Belén Sierra, E. Anibal Disalvo, and Marcela A. Morini
- Subjects
1,2-Dipalmitoylphosphatidylcholine ,Lipid Bilayers ,Population ,Biophysics ,02 engineering and technology ,Carbon nanotube ,Molecular Dynamics Simulation ,010402 general chemistry ,01 natural sciences ,law.invention ,Nanoclusters ,chemistry.chemical_compound ,Molecular dynamics ,law ,Molecule ,General Materials Science ,Lipid bilayer ,education ,education.field_of_study ,Nanotubes, Carbon ,Chemistry ,Otras Ciencias Químicas ,Ciencias Químicas ,Water ,LIQUIDS AND COMPLEX FLUIDS [FLOWING MATTER] ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Solvation shell ,Chemical physics ,Dipalmitoylphosphatidylcholine ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS ,Biotechnology - Abstract
We employ molecular dynamics simulations to study the hydration properties of Dipalmitoylphosphatidylcholine (DPPC) bilayers, both in the gel and the liquid crystalline states. We show that while the tight hydration centers (PO and CO moieties) are significantly hydrated in both phases, the gel-fluid transition involves significant changes at the second hydration shell, particularly at the buried region between the hydrocarbon tails. Thus, while almost no buried water population exists in the gel state below the carbonyls, this hydrophobic region becomes partially water accesible in the liquid crystalline state. We shall also show that such water molecules present a lower H-bond coordination as compared to the molecules at the primary hydration shell. This means that, while the latter are arranged in relatively compact nanoclusters (as already proposed), the buried water molecules tend to organize themselves in less compact structures, typically strings or branched strings, with a scarce population of isolated molecules. This behavior is similar to that observed in other hydration contexts, like water penetrating carbon nanotubes or model hydrophobic channels or pores, and reflects the reluctance of water to sacrifice HB coordination. Graphical abstract: [Figure not available: see fulltext.] Fil: Alarcon, Laureano Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Frías, María de los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santiago del Estero. Universidad Nacional de Santiago del Estero. Centro de Investigaciones y Transferencia de Santiago del Estero; Argentina Fil: Morini, Marcela Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Sierra, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Appignanesi, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Disalvo, Edgardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santiago del Estero. Universidad Nacional de Santiago del Estero. Centro de Investigaciones y Transferencia de Santiago del Estero; Argentina
- Published
- 2016
- Full Text
- View/download PDF