1. A multi-label classification system for anomaly classification in electrocardiogram.
- Author
-
Li C, Sun L, Peng D, Subramani S, and Nicolas SC
- Abstract
Automatic classification of ECG signals has become a research hotspot, and most of the research work in this field is currently aimed at single-label classification. However, a segment of ECG signal may contain more than two cardiac diseases, and single-label classification cannot accurately judge all possibilities. Besides, single-label classification performs classification in units of segmented beats, which destroys the contextual relevance of signal data. Therefore, studying the multi-label classification of ECG signals becomes more critical. This study proposes a method based on the multi-label question transformation method-binary correlation and classifies ECG signals by constructing a deep sequence model. Binary correlation simplifies the learning difficulty of deep learning models and converts multi-label problems into multiple binary classification problems. The experimental results are as follows: F1 score is 0.767, Hamming Loss is 0.073, Coverage is 3.4, and Ranking Loss is 0.262. It performs better than existing work., (© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2022
- Full Text
- View/download PDF