1. Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids
- Author
-
Jurek Czyzowicz, Evangelos Bampas, Leszek Gąsieniec, David Ilcinkas, Arnaud Labourel, Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE), Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Département d'Informatique et d'Ingénierie (DII), Université du Québec en Outaouais (UQO), Department of Computer Science [Liverpool], University of Liverpool, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), See paper for details., ANR-07-BLAN-0322,ALADDIN,Algorithm Design and Analysis for Implicitly and Incompletely Defined Interaction Networks(2007), Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest, and Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Discrete mathematics ,Mathematical optimization ,021103 operations research ,Euclidean space ,Dimension (graph theory) ,0211 other engineering and technologies ,Rendezvous ,0102 computer and information sciences ,02 engineering and technology ,Grid ,01 natural sciences ,Upper and lower bounds ,law.invention ,Computer Science::Multiagent Systems ,010201 computation theory & mathematics ,law ,Position (vector) ,rendezvous ,Cartesian coordinate system ,mobile agents ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Rendezvous problem ,Mathematics - Abstract
International audience; Two anonymous mobile agents (robots) moving in an asynchronous manner have to meet in an infinite grid of dimension $\dime > 0$, starting from two arbitrary positions at distance at most $d$. Since the problem is clearly infeasible in such general setting, we assume that the grid is embedded in a $\dime$-dimensional Euclidean space and that each agent knows the Cartesian coordinates of its own initial position (but not the one of the other agent). We design an algorithm permitting the agents to meet after traversing a trajectory of length $O(d^\dime{\rm polylog\ }d)$. This bound for the case of {\sc 2d}~-grids subsumes the main result of \cite{CCGL}. The algorithm is almost optimal, since the $\Omega(d^\dime)$ lower bound is straightforward. Further, we apply our rendezvous method to the following network design problem. The ports of the $\dime$-dimensional grid have to be set such that two anonymous agents starting at distance at most $d$ from each other will always meet, moving in an asynchronous manner, after traversing a $O(d^\dime{\rm polylog\ }d)$ length trajectory. We can also apply our method to a version of the geometric rendezvous problem. Two anonymous agents move asynchronously in the $\dime$-dimensional Euclidean space. The agents have the radii of visibility of $r_1$ and $r_2$, respectively. Each agent knows only its own initial position and its own radius of visibility. The agents meet when one agent is visible to the other one. We propose an algorithm designing the trajectory of each agent, so that they always meet after traveling a total distance of $O((\frac{d}{r})^\dime {\rm polylog}(\frac{d}{r}))$, where $r = \min(r_1, r_2)$ and for $r\geq 1$.
- Published
- 2010
- Full Text
- View/download PDF