1. Fusion of Novel Iris Segmentation Quality Metrics for Failure Detection
- Author
-
Stephane Belardi, Sonia Garcia-Salicetti, Bernadette Dorizzi, Thierry Lefevre, Nadège Lemperiere, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Thales Communications & Security S.A.S [Velizy], THALES COMMUNICATIONS & SECURITY S.A.S, Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Failure detection ,Segmentation quality measure ,business.industry ,Segmentation-based object categorization ,Computer science ,media_common.quotation_subject ,Iris recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Scale-space segmentation ,Pattern recognition ,Mixture model ,Support vector machine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Iris segmentation ,Quality Score ,Segmentation ,Computer vision ,Quality (business) ,Artificial intelligence ,business ,media_common - Abstract
International audience; Segmentation of the iris is one of the key modules of an iris recognition system. For this reason, it is critical to predict failures of this module. In this article we propose a new set of segmentation quality metrics dedicated this problem. We assess the quality of our metrics based on their ability to predict the intrinsic recognition performance of a segmented image. A straightforward fusion procedure then allows generating a global segmentation quality score.
- Published
- 2013
- Full Text
- View/download PDF