1. Intrinsic aerobic capacity modulates Alzheimer's disease pathological hallmarks, brain mitochondrial function and proteome during aging.
- Author
-
Kugler BA, Lysaker CR, Franczak E, Hauger BM, Csikos V, Stopperan JA, Allen JA, Stanford JA, Koch LG, Britton SL, Thyfault JP, and Wilkins HM
- Subjects
- Animals, Female, Male, Rats, tau Proteins metabolism, Physical Conditioning, Animal physiology, Phosphorylation, Disease Models, Animal, Alzheimer Disease metabolism, Alzheimer Disease pathology, Mitochondria metabolism, Aging metabolism, Aging physiology, Brain metabolism, Proteome metabolism, Amyloid beta-Peptides metabolism
- Abstract
Low aerobic capacity is strongly associated with all-cause mortality and risk for Alzheimer's disease (AD). Individuals with early dementia and AD have lower aerobic capacity compared to age-matched controls. The mechanism by which aerobic capacity influences AD risk is unknown but is likely mediated by sexual dimorphism and tissue-level differences in mitochondrial energetics. Here, we used rats selectively bred for large differences in intrinsic aerobic exercise capacity. Brain tissue from 18-month and 24-month-old female and male low-capacity runner (LCR) and high-capacity runner (HCR) rats were analyzed for markers of mitochondrial function and AD-associated pathologies. LCR rats, irrespective of sex, exhibited a greater increase in brain amyloid beta (Aβ
42 ) and tau hyperphosphorylation (pTauthr181 /total tau) with aging. In female LCR rats, brain mitochondrial respiration at states 3, 4, and FCCP-induced uncoupling, when stimulated with pyruvate/malate, was reduced at 18 and 24 months, leading to lower ATP-linked mitochondrial respiration compared to mitochondria from HCR rats. Male LCR rats also showed reduced complex II-stimulated mitochondrial respiration (succinate + rotenone) at 24 months compared to HCR rats. Differences in mitochondrial respiration were associated with tau hyperphosphorylation and Aβ42 alterations in both HCR and LCR strains. Proteomic analysis unveiled a distinct difference in the mitochondrial proteome, wherein female LCR rats displayed diminished mitochondrial translation and oxidative phosphorylation (OXPHOS) proteins at 18 months compared to female HCR rats. Conversely, male LCR rats exhibited increased OXPHOS protein abundance but reduced tricarboxylic acid (TCA) cycle proteins compared to male HCR rats. These findings underscore a robust association between intrinsic aerobic exercise capacity, brain mitochondrial function, and AD pathologies during aging., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF