1. Zirconium-doped lead dioxide anodes prepared by sol–gel method for ampicillin removal from simulated pharmaceutical polluted wastewater.
- Author
-
Boukhchina, Sahar, Berling, Dominique, Bousselmi, Latifa, El-Bassi, Leila, Vidal, Loic, karkouch, Ines, and Akrout, Hanene
- Abstract
New anodes consisting of zirconium-doped PbO
2 coating, growth on titanium dioxide interlayer, were deposited on titanium substrates using spin coating method and have been tested for the removal of ampicillin, a β-lactam antibiotic, from water. Morphological, structural, and electrochemical properties of the prepared coatings were characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and electrochemical impendence spectroscopy (EIS). Results showed that the incorporation of zirconium dopant had a noticeable modification in the morphology of anodes. An increase in the surface roughness and the specific active area were observed with Ti/TiO2 /PbO2 - 10% Zr electrode compared to other anodes. The electrochemical measurements indicated that the anode doped with 10% Zr showed a more protective coating performance than the undoped and 20% Zr-doped PbO2 electrodes. The experiments on ampicillin degradation revealed that doped lead dioxide anodes have excellent electrocatalytic activity. The major byproduct generated during anodic oxidation treatment has been identified as ampicilloic acid by liquid chromatography-mass spectroscopy (LC–MS) analysis. Results demonstrated that Ti/TiO2 /PbO2 - 10% Zr anode presents the best removal rate of ampicillin with a minimum intermediate amount, which leads to conclude that 10% is the optimum percentage of zirconium dopant for antibiotic wastewater treatment. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF