1. Metabolite ratios as potential biomarkers for type 2 diabetes: a DIRECT study.
- Author
-
Molnos, Sophie, Wahl, Simone, Haid, Mark, Eekhoff, E. Marelise W., Pool, René, Floegel, Anna, Deelen, Joris, Much, Daniela, Prehn, Cornelia, Breier, Michaela, Draisma, Harmen H., van Leeuwen, Nienke, Simonis-Bik, Annemarie M. C., Jonsson, Anna, Willemsen, Gonneke, Bernigau, Wolfgang, Wang-Sattler, Rui, Suhre, Karsten, Peters, Annette, and Thorand, Barbara
- Abstract
Aims/hypothesis: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. Methods: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data ( n = 340) and epidemiological case-control studies of prevalent ( n = 4925) and incident ( n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. Results: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance ( p ≤ 5.4 × 10) and prevalent type 2 diabetes (OR 2.64 [β 0.97 ± 0.09], p = 1.0 × 10). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HR 1.57 [β 0.45 ± 0.06]; p = 1.3 × 10), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). Conclusions/interpretation: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF