1. A shrinkage-thresholding projection method for sparsest solutions of LCPs.
- Author
-
Meijuan Shang and Cuiping Nie
- Subjects
- *
LINEAR complementarity problem , *COMPLEMENTARITY constraints (Mathematics) , *VARIATIONAL inequalities (Mathematics) , *MATHEMATICAL optimization , *FIXED point theory - Abstract
In this paper, we study the sparsest solutions of linear complementarity problems (LCPs), which study has many applications, such as bimatrix games and portfolio selections. Mathematically, the underlying model is NP-hard in general. By transforming the complementarity constraints into a fixed point equation with projection type, we propose an l1 regularization projection minimization model for relaxation. Through developing a thresholding representation of solutions for a key subproblem of this regularization model, we design a shrinkage-thresholding projection (STP) algorithm to solve this model and also analyze convergence of STP algorithm. Numerical results demonstrate that the STP method can efficiently solve this regularized model and get a sparsest solution of LCP with high quality. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF