1. Universal inter-molecular radical transfer reactions on metal surfaces.
- Author
-
Junbo Wang, Kaifeng Niu, Huaming Zhu, Chaojie Xu, Chuan Deng, Wenchao Zhao, Peipei Huang, Haiping Lin, Dengyuan Li, Rosen, Johanna, Peinian Liu, Allegretti, Francesco, Barth, Johannes V., Biao Yang, Björk, Jonas, Qing Li, and Lifeng Chi
- Abstract
On-surface synthesis provides tools to prepare low-dimensional supramolecular structures. Traditionally, reactive radicals are a class of single-electron species, serving as exceptional electron-withdrawing groups. On metal surfaces, however, such species are affected by conduction band screening effects that may even quench their unpaired electron characteristics. As a result, radicals are expected to be less active, and reactions catalyzed by surface-stabilized radicals are rarely reported. Herein, we describe a class of inter-molecular radical transfer reactions on metal surfaces. With the assistance of aryl halide precursors, the coupling of terminal alkynes is steered from non-dehydrogenated to dehydrogenated products, resulting in alkynyl-Ag-alkynyl bonds. Dehalogenated molecules are fully passivated by detached hydrogen atoms. The reaction mechanism is unraveled by various surface-sensitive technologies and density functional theory calculations. Moreover, we reveal the universality of this mechanism on metal surfaces. Our studies enrich the on-surface synthesis toolbox and develop a pathway for producing low-dimensional organic materials. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF