1. Developmental alterations of DHPG-induced long-term depression of corticostriatal synaptic transmission: switch from NMDA receptor-dependent towards CB1 receptor-dependent plasticity.
- Author
-
Chepkova, Aisa N., Fleischer, Wiebke, Kazmierczak, Thomas, Doreulee, Nanuli, Haas, Helmut L., and Sergeeva, Olga A.
- Subjects
PARKINSON'S disease ,METHYL aspartate ,NEURAL transmission ,PATHOLOGICAL physiology ,POLYMERASE chain reaction - Abstract
In animal models of early Parkinson’s disease (PD), motor deficits are accompanied by excessive striatal glutamate release. Blockade of group I metabotropic glutamate receptors (mGluRs), endocannabinoid degradation and nitric oxide (NO) synthesis combats PD symptoms. Activation of group I mGluRs with the specific agonist 3,5-dihydroxyphenylglycine (DHPG) induces long-term depression of corticostriatal transmission (LTD
DHPG ) in the adult mouse striatum requiring NO synthesis downstream to cannabinoid CB1 receptor (CB1R) activation suggesting a dual role for LTDDHPG : neuroprotective by down-regulation of glutamatergic transmission and, under certain circumstances, neurotoxic by release of NO. We report now that LTDDHPG undergoes a developmental switch from N-methyl-D-aspartate (NMDA)-receptor-dependent/CB1R-independent to NMDA receptor-independent/CB1R-dependent plasticity with NO playing an essential role for LTDDHPG at all developmental stages. The gain in function of CB1R is explained by their developmental up-regulation evaluated with real-time reverse transcription-polymerase chain reaction. These findings are relevant for the pathophysiology and therapy of PD as they link the activation of group I mGluRs, endocannabinoid release, and striatal NO production. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF