Lin, Jianzhen, Peng, Xinxin, Dong, Kun, Long, Junyu, Guo, Xuejiao, Li, Hongyue, Bai, Yi, Yang, Xu, Wang, Dongxu, Lu, Xin, Mao, Yilei, Sang, Xinting, Ji, Xuwo, Zhao, Haitao, and Liang, Han
Gallbladder carcinoma is the most common cancer of the biliary tract with dismal survival largely due to delayed diagnosis. Biliary tract intraepithelial neoplasia (BilIN) is the common benign tumor that is suspected to be precancerous lesions. However, the genetic and evolutionary relationships between BilIN and carcinoma remain unclear. Here we perform whole-exome sequencing of coexisting low-grade BilIN (adenoma), high-grade BilIN, and carcinoma lesions, and normal tissues from the same patients. We identify aging as a major factor contributing to accumulated mutations and a critical role of CTNNB1 mutations in these tumors. We reveal two distinct carcinoma evolutionary paths: carcinoma can either diverge earlier and evolve more independently or form through the classic adenoma/dysplasia-carcinoma sequence model. Our analysis suggests that extensive loss-of-heterozygosity and mutation events in the initial stage tend to result in a cancerous niche, leading to the subsequent BilIN-independent path. These results reframes our understanding of tumor transformation and the evolutionary trajectory of carcinogenesis in the gallbladder, laying a foundation for the early diagnosis and effective treatment of gallbladder cancer. The progression from biliary tract intraepithelial neoplasia (BilIN) to gallbladder carcinoma (GBC) remains unclear. Here the authors use genomics to analyze coexisting GBC lesions, low-grade and high-grade BilINs, revealing two distinct evolutionary paths for GBC development. [ABSTRACT FROM AUTHOR]