1. The effects of electrochemical oxidation on in-vivo fluorescence and toxin content in Microcystis aeruginosa culture.
- Author
-
Rozina, Tinkara, Eleršek, Tina, Zupančič Justin, Maja, Meglič, Andrej, Leštan, Domen, and Sedmak, Bojan
- Abstract
The increasing occurrence of cyanobacterial blooms in water bodies is a serious threat to the environment. Efficient in-lake treatment methods for the control of cyanobacteria proliferation are needed, their in-vivo detection to obtain a real-time response to their presence, as well as the information about their physiological state after the applied treatment. In-vivo fluorescence measurements of photosynthetic pigments have proved to be effective for quantitative and qualitative detection of phytoplankton in a water environment. In the experiment, chlorophyll and phycocyanin fluorescence sensors were used concurrently to detect stress caused by electrochemical oxidation applying an electrolytic cell equipped with borondoped diamond electrodes on a laboratory culture of cyanobacteria Microcystis aeruginosa PCC 7806. The inflicted injuries were reflected in a clear transient increase in the phycocyanin fluorescence signal (for 104 %± 43%) 24 h after the treatment, which was not the case for the chlorophyll fluorescence signal. In the next 72 h of observation, the fluorescence signals decreased (on 40% of the starting signal) indicating a reduction of cell number, which was confirmed by cell count (24% reduction of the starting concentration) and analysis of extracted chlorophyll and phycocyanin pigment. These results demonstrate the viability of the combined application of two sensors as a useful tool for in-vivo detection of induced stress, providing real-time information needed for the evaluation of the efficiency of the in-lake treatment and decision upon the necessity of its repetition. The electrochemical treatment also resulted in a lower free microcystins concentration compared to control. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF