1. A model for decoding the life cycle of granular avalanches in a rotating drum.
- Author
-
Marteau, Eloïse and Andrade, José E.
- Subjects
- *
GRANULAR materials , *AVALANCHES , *LANDSLIDES , *MATERIAL plasticity , *KINEMATICS - Abstract
Granular materials can behave as harmless sand dunes or as devastating landslides. A granular avalanche marks the transition between these distinct solid-like and fluid-like states. The solid-like state is typically described using plasticity models from critical state theory. In the fluid regime, granular flow is commonly captured using a visco-plastic model. However, due to our limited understanding of the mechanism governing the solid-fluid-like transition, characterizing the material behavior throughout the life cycle of an avalanche remains an open challenge. Here, we employ laboratory experiments of transient avalanches spontaneously generated by a rotating drum. We report measurements of dilatancy and grain kinematics before, during, and after each avalanche. Those measurements are directly incorporated into a rate-dependent plasticity model that quantitatively predicts the granular flow measured in experiments. Furthermore, we find that dilatancy in the solid-like state controls the triggering of granular avalanches and therefore plays a key role in the solid-fluid-like transition. With the proposed approach, we demonstrate that the life cycle of a laboratory avalanche, from triggering to run out, can be fully explained. Our results represent an important step toward a unified understanding of the physical phenomena associated with transitional behavior in granular media. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF