1. An Artificial Intelligence Platform for the Radiologic Diagnosis of Pulmonary Sarcoidosis: An Initial Pilot Study of Chest Computed Tomography Analysis to Distinguish Pulmonary Sarcoidosis from a Negative Lung Cancer Screening Scan.
- Author
-
Judson, Marc A., Qiu, Jianwei, Dumas, Camille L., Yang, Jun, Sarachan, Brion, and Mitra, Jhimli
- Subjects
SARCOIDOSIS ,ARTIFICIAL intelligence ,TRANSFORMER models ,EARLY detection of cancer ,LUNG cancer ,TOMOGRAPHY - Abstract
Purpose: To determine the reliability of an artificial intelligence, deep learning (AI/DL)-based method of chest computer tomography (CT) scan analysis to distinguish pulmonary sarcoidosis from negative lung cancer screening chest CT scans (Lung Imaging Reporting and Data System score 1, Lung-RADS score 1). Methods: Chest CT scans of pulmonary sarcoidosis were evaluated by a clinician experienced with sarcoidosis and a chest radiologist for clinical and radiologic evidence of sarcoidosis and exclusion of alternative or concomitant pulmonary diseases. The AI/DL based method used an ensemble network architecture combining Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The method was applied to 126 pulmonary sarcoidosis and 96 Lung-RADS score 1 CT scans. The analytic approach of training and validation of the AI/DL method used a fivefold cross-validation technique, where 4/5th of the available data set was used to train a diagnostic model and tested on the remaining 1/5th of the data set, and repeated 4 more times with non-overlapping validation/test data. The probability values were used to generate Receiver Operating Characteristic (ROC) curves to assess the model's discriminatory power. Results: The sensitivity, specificity, positive and negative predictive value of the AI/DL method for the 5 folds of the training/validation sets and the entire set of CT scans were all over 94% to distinguish pulmonary sarcoidosis from LUNG-RADS score 1 chest CT scans. The area under the curve for the corresponding ROC curves were all over 97%. Conclusion: This AL/DL model shows promise to distinguish sarcoidosis from alternative pulmonary conditions using minimal radiologic data. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF