1. The history and architecture of lacustrine depositional systems in the northern Lake Michigan basin.
- Author
-
Safarudin and Moore Jr., T. C.
- Subjects
GLACIERS ,LAKES ,WATER levels - Abstract
The post-glacial history of the Great Lakes has involved changes in lake levels that are equivalent in vertical extent to the Pleistocene changes in global sea level and changes in sediment accumulation by at least two orders of magnitude. In the sediments of the northern Lake Michigan basin, these radical changes in base level and sediment supply are preserved in detailed records of changing depositional environment and the impact of these changes on depositional architecture. The seismic sequences of the sediment fill previously described in Lake Huron have been carried into northern Lake Michigan and used to map the history and architecture of basinal deposition. As the Laurentide Ice Sheet retreated northward in the early Holocene, it opened progressively deeper channels to the east that allowed the larger lakes to drain through the North Channel, Huron, and Georgian Bay basins. At the end of the Main Algonquin highstand, about 10,200 (radiocarbon) yrs ago, the eastern drainage passage deepened in a series of steps that defined four seismic sequences and lowered lake levels by over 100 m. Near the same time a new source of sediment and meltwaters poured across the Upper Peninsula of Michigan and into the northern Lake Michigan basin from the Superior basin ice lobe. A marked increase in deposition is seen first in the northern part of the study area, and slightly later in the Whitefish Fan area at the southern end of the study area. Accumulation rates in the area gradually decreased even as lake levels continued to fall. Drainage directly from the Superior basin ended before the beginning of the main Mattawa phase about 9,200 (radiocarbon) yrs ago. Although individual lowstand systems tracts are at the most a few hundred yrs in duration, their geometries and seismic character are comparable to marine systems tracts associated with sea level falls of similar magnitudes. In some of the thicker lowstand deposits a second order cyclicity in sedimentation can be detected in the high resolution seismic records. [ABSTRACT FROM AUTHOR]
- Published
- 1999
- Full Text
- View/download PDF