1. Orbit Growth of Sofic Shifts and Periodic-Finite-Type Shifts.
- Author
-
Nordin, Azmeer, Noorani, Mohd Salmi Md, and Mohd, Mohd Hafiz
- Abstract
A sofic shift is a shift space consisting of bi-infinite labels of paths from a labelled graph. Being a dynamical system, the distribution of its closed orbits may indicate the complexity of the shift. For this purpose, prime orbit and Mertens’ orbit counting functions are introduced as a way to describe the growth of the closed orbits. The asymptotic behaviours of these counting functions can be implied from the analyticity of the Artin–Mazur zeta function of the shift. Its zeta function is expressed implicitly in terms of several signed subset matrices. In this paper, we will prove the asymptotic behaviours of the counting functions for sofic shifts via their zeta function. This involves investigating the properties of the said matrices. Suprisingly, the proof simply uses some well-known facts about sofic shifts, especially on the minimal right-resolving presentations. Furthermore, we will demonstrate this result by revisiting the case for periodic-finite-type shifts, which are a particular type of sofic shifts. At the end, we will briefly discuss the application of our finding towards the finite group and homogeneous extensions of a sofic shift. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF