1. An unusual case of gender-associated mitochondrial DNA heteroplasmy: the mytilid Musculista senhousia (Mollusca Bivalvia)
- Author
-
Marco Passamonti and PASSAMONTI M.
- Subjects
Male ,Mitochondrial DNA ,Molecular Sequence Data ,Inheritance Patterns ,Uniparental inheritance ,Biology ,DNA, Mitochondrial ,MUSCULISTA SENHOUSIA ,Evolution, Molecular ,Sex Factors ,Paternal mtDNA transmission ,Phylogenetics ,Genetic variation ,Animals ,Phylogeny ,Ecology, Evolution, Behavior and Systematics ,Genetics ,Phylogenetic tree ,Base Sequence ,Research ,Haplotype ,Genetic Variation ,DOUBLY UNIPARENTAL INHERITANCE ,Heteroplasmy ,Evolutionary biology ,MOLLUSCA BIVALVIA ,Mytilidae ,Female ,MITOCHONDRIAL DNA ,Sequence Alignment - Abstract
Background Doubly Uniparental Inheritance (DUI) represents the most outstanding exception to matrilinear inheritance of mitochondial DNA (mtDNA), typical of Metazoa. In a few bivalve mollusks, two sex-linked mtDNAs (the so-called M and F) are inherited in a peculiar way: both daughters and sons receive their F from the mother, whereas sons inherit M from the father (males do not transmit F to their progeny). This realizes a double mechanism of transmission, in which M and F mtDNAs are inherited uniparentally. DUI systems represent a unique experimental model for testing the evolutionary mechanisms that apply to mitochondrial genomes and their transmission patterns as well as to mtDNA recombination. Results A new case of DUI is described in Musculista senhousia (Mollusca: Bivalvia: Mytilidae). Its heteroplasmy pattern is in line with standard DUI. Sequence variability analysis evidenced two main results: F haplotypes sequence variability is higher than that of M haplotypes, and F mitochondrial haplotypes experience a higher mutation rate in males’ somatic tissues than in females’ ones. Phylogenetic analysis revealed also that M. senhousia M and F haplotypes cluster separately from that of the other mytilids. Conclusions Sequence variability analysis evidenced some unexpected traits. The inverted variability pattern (the F being more variable than M) was new and it challenges most of the rationales proposed to account for sex-linked mtDNA evolution. We tentatively related this to the history of the Northern Adriatic populations analyzed. Moreover, F sequences evidenced a higher mutation level in male’s soma, this variability being produced de novo each generation. This suggests that mechanisms evolved to protect mtDNA in females (f.i. antioxidant gene complexes) might be under relaxed selection in males. Phylogenetic analysis of sex-linked haplotypes confirmed that they have switched their roles during the evolutionary history of mytilids, at variance to what has been observed in unionids. Consequently, reciprocal monophyly of M and F lineages got easily lost because of role-reversals and consequent losses of M lineages, as already observed in Mytilus.
- Full Text
- View/download PDF