1. Insight mechanism of magnetic activated catalyst derived from recycled steel residue for black liquor degradation.
- Author
-
Flores-López, Zacek David, Solís-Díaz, Aylín Belén, Cervantes-Aviles, Pabel Antonio, Thangarasu, Pandiyan, Kumar, Deepak, Kaur, Harpreet, Singh, Jashanpreet, Lokande, Prasad, Huerta-Aguilar, Carlos Alberto, and Mubarak, Nabisab Mujawar
- Subjects
SULFATE waste liquor ,CHEMICAL oxygen demand ,STEEL ,CHEMICAL reduction ,SUSTAINABLE chemistry ,FIRE resistant materials - Abstract
The present work deals with developing a method for revalorizing steel residues to create sunlight-active photocatalysts based on iron oxides. Commercial-grade steel leftovers are oxidized under different combinations of pH and temperature (50–90 °C and 3 ≥ pH ≤ 5) in a low energy-intensive setup. The material with the highest production efficiency (yield > 12%) and magnetic susceptibility (χ
m = 387 × 10−6 m3 /kg) was further explored and modified by diffusion of M2+ (Zn and Co) ions within the structure of the oxide using a hydrothermal method to create ZnFe2 O4 , CoFe2 O4 and combined Co–Zn ferrite. (Co–Zn)Fe2 O4 displayed a bandgap of 2.02 eV and can be activated under sunlight irradiation. Electron microscopy studies show that (Co–Zn)Fe2 O4 consists of particles with diameters between 400 and 700 nm, homogeneous size, even distribution, and good dispersibility. Application of the developed materials in the sunlight catalysis of black liquors from cellulose extraction resulted in a reduction of the Chemical Oxygen Demand (− 15% on average) and an enhancement in biodegradability (> 0.57 BOD/COD) after 180 min of reaction. Since the presented process employs direct solar light, it opens the possibility to large-scale water treatment and chemical upgrading applications. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF