1. Cooperative evolutionary heterogeneous simulated annealing algorithm for google machine reassignment problem.
- Author
-
Turky, Ayad, Sabar, Nasser R., and Song, Andy
- Abstract
This paper investigates the Google machine reassignment problem (GMRP). GMRP is a real world optimisation problem which is to maximise the usage of cloud machines. Since GMRP is computationally challenging problem and exact methods are only advisable for small instances, meta-heuristic algorithms have been used to address medium and large instances. This paper proposes a cooperative evolutionary heterogeneous simulated annealing (CHSA) algorithm for GMRP. The proposed algorithm consists of several components devised to generate high quality solutions. Firstly, a population of solutions is used to effectively explore the solution space. Secondly, CHSA uses a pool of heterogeneous simulated annealing algorithms in which each one starts from a different initial solution and has its own configuration. Thirdly, a cooperative mechanism is designed to allow parallel searches to share their best solutions. Finally, a restart strategy based on mutation operators is proposed to improve the search performance and diversification. The evaluation on 30 diverse real-world instances shows that the proposed CHSA performs better compared to cooperative homogeneous SA and heterogeneous SA with no cooperation. In addition, CHSA outperformed the current state-of-the-art algorithms, providing new best solutions for eleven instances. The analysis on algorithm behaviour clearly shows the benefits of the cooperative heterogeneous approach on search performance. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF