1. Immunofocusing humoral immunity potentiates the functional efficacy of the AnAPN1 malaria transmission-blocking vaccine antigen.
- Author
-
Bender NG, Khare P, Martinez J, Tweedell RE, Nyasembe VO, López-Gutiérrez B, Tripathi A, Miller D, Hamerly T, Vela EM, Davis RR, Howard RF, Nsango S, Cobb RR, Harbers M, and Dinglasan RR
- Abstract
Malaria transmission-blocking vaccines (TBVs) prevent the completion of the developmental lifecycle of malarial parasites within the mosquito vector, effectively blocking subsequent infections. The mosquito midgut protein Anopheline alanyl aminopeptidase N (AnAPN1) is the leading, mosquito-based TBV antigen. Structure-function studies identified two Class II epitopes that can induce potent transmission-blocking (T-B) antibodies, informing the design of the next-generation AnAPN1. Here, we functionally screened new immunogens and down-selected to the UF6b construct that has two glycine-linked copies of the T-B epitopes. We then established a process for manufacturing UF6b and evaluated in outbred female CD1 mice the immunogenicity of the preclinical product with the human-safe adjuvant Glucopyranosyl Lipid Adjuvant in a liposomal formulation with saponin QS21 (GLA-LSQ). UF6b:GLA-LSQ effectively immunofocused the humoral response to one of the key T-B epitopes resulting in potent T-B activity, underscoring UF6b as a prime TBV candidate to aid in malaria elimination and eradication efforts.
- Published
- 2021
- Full Text
- View/download PDF