1. Multiscale Analysis of Biological Systems
- Author
-
Annick Lesne
- Subjects
Scheme (programming language) ,Genome ,Theoretical computer science ,Systems Biology ,Applied Mathematics ,Systems biology ,General Medicine ,Minimal models ,Quantum entanglement ,Models, Theoretical ,Bioinformatics ,Multiscale modeling ,General Biochemistry, Genetics and Molecular Biology ,Living systems ,Causality (physics) ,Philosophy ,Philosophy of biology ,Biofilms ,General Agricultural and Biological Sciences ,computer ,General Environmental Science ,Mathematics ,computer.programming_language - Abstract
It is argued that multiscale approaches are necessary for an explanatory modeling of biological systems. A first step, besides common to the multiscale modeling of physical and living systems, is a bottom-up integration based on the notions of effective parameters and minimal models. Top-down effects can be accounted for in terms of effective constraints and inputs. Biological systems are essentially characterized by an entanglement of bottom-up and top-down influences following from their evolutionary history. A self-consistent multiscale scheme is proposed to capture the ensuing circular causality. Its differences with standard mean-field self-consistent equations and slow-fast decompositions are discussed. As such, this scheme offers a way to unravel the multilevel architecture of living systems and their regulation. Two examples, genome functions and biofilms, are detailed.
- Published
- 2013
- Full Text
- View/download PDF