1. HFE Gene Variants' Impact on Anthracycline-Based Chemotherapy-Induced Subclinical Cardiotoxicity
- Author
-
Gintare Muckiene, Juozas Kupcinskas, Rasa Ugenskiene, Audrone Vaitiekiene, Liveta Sereikaite, Ruta Inciuraite, Elona Juozaityte, Domas Vaitiekus, Daiva Cepuliene, Renaldas Jurkevičius, and Ruta Insodaite
- Subjects
Adult ,Oncology ,medicine.medical_specialty ,Heart Diseases ,Anthracycline ,medicine.medical_treatment ,Breast Neoplasms ,030204 cardiovascular system & hematology ,Toxicology ,Polymorphism, Single Nucleotide ,Risk Assessment ,03 medical and health sciences ,0302 clinical medicine ,Breast cancer chemotherapy ,Breast cancer ,Risk Factors ,Internal medicine ,Genetic predisposition ,Humans ,Medicine ,Outpatient clinic ,Anthracyclines ,Genetic Predisposition to Disease ,Doxorubicin ,Prospective Studies ,Risk factor ,Hemochromatosis Protein ,Molecular Biology ,Cardiotoxicity ,Antibiotics, Antineoplastic ,business.industry ,Middle Aged ,medicine.disease ,Phenotype ,030220 oncology & carcinogenesis ,Female ,Cardiology and Cardiovascular Medicine ,business ,medicine.drug - Abstract
Progress in oncology has allowed to improve outcomes in many breast cancer patients. The core stone of breast cancer chemotherapy is anthracycline-based chemotherapy. Unfortunately, anthracyclines cause cardiotoxicity which is a limiting factor of its use and lifetime cumulative dose of anthracyclines is the major risk factor for cardiotoxicity. With evolution of echocardiography subclinical damage is identified, and more sensitive evaluation can be performed. This leads to understanding the heart damage beyond cumulative dose in early phase and importance of other risk factors. There are many risk factors for anthracycline-based chemotherapy cardiotoxicity (ABCC) like arterial hypertension, obesity, diabetes, genetic predisposition, etc. One of possible pathophysiological pathways is iron metabolism, especially HFE gene-regulated iron metabolism pathway. Pre-existing genetic iron metabolism dysregulation increases risk for ABCC. Clinical studies and experimental models in mice have shown potential impact of HFE gene SNP on ABCC. The main objective of our study was to identify the impact of HFE C282Y and H63D SNP on the development of subclinical heart damage during and/or after doxorubicin-based chemotherapy in breast cancer patients. Data of 81 women with breast cancer treated with doxorubicin-based chemotherapy in the outpatient clinic were analyzed and SNP RT-PCR tests were performed. Statistically significant association between H63D and ABCC after completion of chemotherapy was observed (p
- Published
- 2020
- Full Text
- View/download PDF