1. OMERO: flexible, model-driven data management for experimental biology
- Author
-
Josh Moore, Scott Loynton, Jason R. Swedlow, Christoph Best, Ingvar Lagerstedt, William J. Moore, Chris Allan, Donald MacDonald, Michael Porter, Jean-Marie Burel, Simone Leo, Katherine Hands, Ronald T. Hay, Brian Loranger, Jerome Avondo, Luca Lianas, Andrew J. Patterson, Colin Blackburn, Carlos H. Neves, Gianluigi Zanetti, Aleksandra Tarkowska, Ardan Patwardhan, Gerard J. Kleywegt, and Melissa Linkert
- Subjects
Databases, Factual ,Data management ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Information Storage and Retrieval ,Bioinformatics ,Models, Biological ,Biochemistry ,Article ,GeneralLiterature_MISCELLANEOUS ,User-Computer Interface ,03 medical and health sciences ,0302 clinical medicine ,Software ,Image Interpretation, Computer-Assisted ,Animals ,Humans ,Computer Simulation ,Biology ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,Hardware_MEMORYSTRUCTURES ,business.industry ,Cell Biology ,Database Management Systems ,Experimental biology ,business ,Software engineering ,030217 neurology & neurosurgery ,Biotechnology - Abstract
Data-intensive research depends on tools that manage multi-dimensional, heterogeneous data sets. We have built OME Remote Objects (OMERO), a software platform that enables access to and use of a wide range of biological data. OMERO uses a server-based middleware application to provide a unified interface for images, matrices, and tables. OMERO’s design and flexibility have enabled its use for light microscopy, high content screening, electron microscopy, and even non-image genotype data. OMERO is open source software and available at http://openmicroscopy.org.
- Published
- 2012
- Full Text
- View/download PDF