1. Ultra-high irradiance (UHI) blue light: highlighting the potential of a novel LED-based device for short antifungal treatments of food contact surfaces
- Author
-
Emilie Lang, Thibaut Thery, Caroline Peltier, Florent Colliau, Jérémy Adamuz, Cédric Grangeteau, Sébastien Dupont, Laurent Beney, Procédés Alimentaires et Microbiologiques [Dijon] (PAM), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), NLX-Next Lighting eXperience, Procédés Microbiologiques et Biotechnologiques (PMB), Procédés Alimentaires et Microbiologiques (PAM), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Procédés Alimentaires et Microbiologiques [Dijon] (PAM), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, and ANR-18-CE21-0004,GreenDeconta,Procédé vert de décontamination microbienne par la maîtrise de la lumière et de l'humidité(2018)
- Subjects
2. Zero hunger ,0303 health sciences ,Antifungal Agents ,Microbial Viability ,Light ,030306 microbiology ,LED ,S. cerevisiae ,Saccharomyces cerevisiae ,General Medicine ,High irradiance ,Applied Microbiology and Biotechnology ,Disinfection ,03 medical and health sciences ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,13. Climate action ,405 nm ,Blue light ,030304 developmental biology ,Biotechnology - Abstract
International audience; Microbial food spoilage is an important cause of health and economic issues and can occur via resilient contamination of food surfaces. Novel technologies, such as the use of visible light, have seen the light of day to overcome the drawbacks associated with surface disinfection treatments. However, most studies report that photo-inactivation of microorganisms with visible light requires long time treatments. In the present study, a novel light electroluminescent diode (LED)-based device was designed to generate irradiation at an ultra-high power density (901.1 mW/cm2). The efficacy of this technology was investigated with the inactivation of the yeast S. cerevisiae. Short-time treatments (below 10 min) at 405 nm induced a ~4.5 log reduction rate of the cultivable yeast population. The rate of inactivation was positively correlated to the overall energy received by the sample and, at a similar energy, to the power density dispatched by the lamp. A successful disinfection of several food contact surfaces (stainless steel, glass, polypropylene, polyethylene) was achieved as S. cerevisiae was completely inactivated within 5 min of treatments. The disinfection of stainless steel was particularly effective with a complete inactivation of the yeast after 2 min of treatment. This ultra-high irradiance technology could represent a novel cost- and time-effective candidate for microbial inactivation of food surfaces. These treatments could see applications beyond the food industry, in segments such as healthcare or public transport. KEY POINTS : • A novel LED-based device was designed to emit ultra-high irradiance blue light • Short time treatments induced high rate of inhibition of S. cerevisiae • Multiple food contact surfaces were entirely disinfected with 5-min treatments.
- Published
- 2021