1. Classification of electrophysiological and morphological neuron types in the mouse visual cortex
- Author
-
David Sandman, Brian Lee, Michael Hawrylycz, Sara Kebede, Tom Egdorf, David Reid, Rob Young, Nivretta Thatra, Stefan Mihalas, David Feng, John W. Phillips, Rebecca de Frates, DiJon Hill, Cliff Slaughterbeck, Samuel R Josephsen, Tamara Casper, Xiaoxiao Liu, Hanchuan Peng, Peter Chong, Colin Farrell, Zhi Zhou, Sheana Parry, Jed Perkins, Brian Long, Susan M. Sunkin, Matthew Kroll, Krissy Brouner, Melissa Gorham, Aaron Szafer, Wayne Wakeman, Hong Gu, Marissa Garwood, Daniel Park, Kristen Hadley, Michael S. Fisher, Lydia Potekhina, Ed Lein, Alice Mukora, Hongkui Zeng, Nick Dee, Aaron Oldre, Lindsay Ng, Thomas Braun, Grace Williams, Tracy Lemon, Julie A. Harris, Medea McGraw, Nadezhda Dotson, Philip R. Nicovich, Amanda Gary, Rusty Mann, Alex M. Henry, Caroline Habel, Samuel Dingman, Katherine E. Link, Nathalie Gaudreault, Gilberto J. Soler-Llavina, Thuc Nghi Nguyen, Nicole Blesie, Bosiljka Tasic, Lydia Ng, Christine Cuhaciyan, Tim Jarsky, Keith B. Godfrey, Costas A. Anastassiou, Kirsten Crichton, Josef Sulc, Martin Schroedter, Dan Castelli, Miranda Robertson, Amy Bernard, Lisa Kim, Songlin Ding, Alyse Doperalski, Nathan W. Gouwens, Herman Tung, Tsega Desta, Corinne Teeter, James Harrington, Jonathan T. Ting, Kris Bickley, Anton Arkhipov, Kiet Ngo, Changkyu Lee, Jim Berg, Agata Budzillo, Emma Garren, Tanya L. Daigle, Christof Koch, Rachel A. Dalley, Eliza Barkan, Staci A. Sorensen, Gabe J. Murphy, Shiella Caldejon, and Naz Taskin
- Subjects
0301 basic medicine ,Genetically modified mouse ,Cell type ,Patch-Clamp Techniques ,Databases, Factual ,Action Potentials ,Datasets as Topic ,Mice, Transgenic ,Biology ,Article ,Neuron types ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Genes, Reporter ,Biocytin ,medicine ,Animals ,Cell shape ,Cell Shape ,Visual Cortex ,Neurons ,General Neuroscience ,Laboratory mouse ,Electrophysiology ,030104 developmental biology ,Visual cortex ,medicine.anatomical_structure ,chemistry ,Transcriptome ,Neuroscience ,030217 neurology & neurosurgery - Abstract
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly accessible online database, the Allen Cell Types Database, to display these datasets. Intrinsic physiological properties were measured from 1,938 neurons from the adult laboratory mouse visual cortex, morphological properties were measured from 461 reconstructed neurons, and 452 neurons had both measurements available. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We established a taxonomy of morphologically and electrophysiologically defined cell types for this region of the cortex, with 17 electrophysiological types, 38 morphological types and 46 morpho-electric types. There was good correspondence with previously defined transcriptomic cell types and subclasses using the same transgenic mouse lines.
- Published
- 2019