1. Bivalve molluscs as biosensors of water quality: state of the art and future directions
- Author
-
James E. Vereycken, David C. Aldridge, Vereycken, JE [0000-0003-0617-3642], and Apollo - University of Cambridge Repository
- Subjects
Valve movement behaviour ,Biomonitoring ,Heart rate ,Aquatic Science ,Mussel ,Biological early warning system ,Pollution - Abstract
Funder: Corpus Christi College, University of Cambridge; doi: http://dx.doi.org/10.13039/501100000591, Funder: St Catharine's College, University of Cambridge; doi: http://dx.doi.org/10.13039/501100008101, Biological early warning systems (BEWSs) monitor the behaviour or physiology of living organisms as an indirect mechanism to sense local environmental changes, and have become a widely established tool for monitoring water pollution. Complementary to conventional chemical and physical techniques, their strength lies in the ability to continuously monitor water quality, providing direct and rapid warning of toxic discharges. Bivalve molluscs (mussels and clams) are ideal sensing organisms for BEWSs, owing to their: high water filtration capacity; sensitivity to numerous, diverse pollutants; considerable longevity; high abundance; and wide range of physical responses to environmental change. Two behavioural metrics of bivalves have dominated in ecotoxicological studies, and consequently spawned development into BEWSs: valve movements, typically measured using electromagnetic techniques; and bivalve cardiac activity, typically measured using infrared photoplethysmography. However, other, less studied bivalve behaviours may exhibit pollutant impacts, including shell growth and dissolution, premature egg/larval release, horizontal movement, and burial. Such metrics may, with further research, provide bases for future BEWSs, some through current valve movement monitoring technology, others potentially through acoustic telemetry. Future bivalve-based BEWSs may become more informative and sensitive through the greater nuance that lies in integration of different metrics simultaneously and/or multi-species monitoring. Future directions may seek techniques that reduce disturbance to bivalves and enable observation of a more natural mode of behaviour, through using untethered, or entirely unequipped, specimens. With rigorous controls for individual- and population-level variation, bivalves have great power as biosensors and, bolstered by the scope for future advancements, this field has the potential to make significant contributions to future water quality management.
- Published
- 2023
- Full Text
- View/download PDF